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Abstract

In this thesis, we propose various deep learning (DL) based methods for vocal melody extraction. Vocal

melody extraction is the task that identifies the melody pitch contour of the singing voice from multi-

ple sources. Previous studies have been proposed as methods of calculating the pitch saliency from a

spectrogram or isolating the melody source from the mixture. However, these methods have limitations

in obtaining optimal outputs for various music. Although the performance of melody extraction has

improved with the recent advances in DL, there are still limitations in terms of overall performance,

the model using music-related knowledge and the lack of labeled data. Here we report the e↵ective

methods to estimate the pitch of melody and detect singing voice by introducing novel DL models and

loss function. We also propose a multi-task network that allows pitch estimation and voice detection are

tightly coupled. To address the lack of labeled data, we applied the semi-supervised learning that utilizes

large amounts of unlabeled data. We explored the e↵ects of three teacher-student model setups, data

augmentation, and unlabeled data, and proposed the most e↵ective learning method for vocal melody

extraction. In addition, we apply semi-supervised learning to the singing vocal detection and show that

it can be extended to other MIR tasks that su↵er from lack of labeled data.

Keywords Deep Learning, Vocal Melody Extraction, Singing Voice Detection, Semi-Supervised Learn-

ing
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Chapter 1. Introduction

The most basic elements that constitute music are melody, rhythm, timbre, and harmony [1]. Among

them, the melody is a significant factor influencing the distinction of songs. The definition of melody is

very diverse, and the most commonly cited definition of the melody was proposed by Poliner et al. [2]

as follows:

“The melody is the single (monophonic) pitch sequence that a listener might reproduce if

asked to whistle or hum a piece of polyphonic music, and that a listener would recognize as

being the ‘essence’ of that music when heard in comparison”.

As can be seen in the original Greek melōid́ıa (“Sing” or “Chat”), the melody is often performed in

the human voice [3]. From the definition and original terminology, we can see that ‘melody’ is a pitch

sequence that is perceived through human cognitive processes and reproduced by human voice (or a

musical instrument). It is revealed through various musical cognitive experiments that melody is not only

recognized as a physical factor but is influenced by human cognition. Similar timbres or harmonics (i.e.,

with perceptual and conceptual similarities) have been observed to interfere with melody perception [4,5].

In addition, it has been found that a person considers a melody context while recognizing a melody using

a pitch framework (e.g., key structure) that was previously implicitly learned [5]. These studies showed

that a person is perceived through a complex perceptual process, not only physically distinguishing the

pitch and melody.

The operation of automatically estimating the pitch trajectory of a melody from polyphonic sounds

is called melody extraction in the field of MIR (Music Information Retrieval). The operation of extract-

ing melody can be defined simply, but the actual execution involves implicitly complex processes, such

as the process by which humans perceive melody. Therefore, it is academically important to devise a

computational system for extracting melodies. In many previous studies, various algorithms have been

proposed that utilize insights from human perception processes, based on salience functions or source

separation methods [6]. Unfortunately, real music audios have a wide variety of variations by genre,

instrument, timbre, and techniques of mixing and mastering. Furthermore, singing voices are more com-

plex than musical instruments due to their acoustic characteristics (unstable vocalization and complex

harmonics) [3]. Due to these hurdles, the proposed heuristic methods have limitations in obtaining

optimal results for all cases [7].

In this thesis, we focus on the characteristic aspects of vocals and deal with the automatic extraction

of vocal melodies from polyphonic music sources. In popular music, the singing voice is a central sound

source that delivers melody, lyrics, and emotions. Since recent music services require more advanced

solutions to search for songs or evaluate musical characteristics, automatic analysis of vocal has also

been an important research topic [8]. To avoid the heuristic process of model design, the classification-

based approach based on deep learning has recently attracted a lot of attention to melody extraction.

Various domain-specific problems are being studied for more e�cient model training as follows: input

representations designed to e↵ectively reveal melody features; methods related to output such as pitch

resolution of label or loss function; process of leveraging lack of labeled data. We review the issues

mentioned above and explore more e↵ective strategies and systems for melody extraction.
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1.1 Contributions of this Dissertation

This thesis contributes to the field of music information retrieval through studies on melody ex-

traction and singing voice detection using deep learning. The main contributions of the thesis can be

summarized as follows:

• An investigation into the importance of pitch resolution to mitigate the pitch quanti-

zation problem that the classification-based approach has intrinsically. Previous research

handled only deep neural network (DNN) for melody extraction. We propose a singing melody ex-

traction model using convolutional neural networks (CNN) and explore the importance of pitch

resolution and combining multiple models with di↵erent pitch resolution in the singing pitch ex-

tractor.

• Evaluation of conventional loss functions for melody extraction and proposal of vari-

ations of the modified loss functions. We compare conventional loss functions for melody

extraction using two classification models; one is based on CNN and the other is on Convolutional

Recurrent Neural Network (CRNN). Through the performance comparison of the loss functions,

we propose variations of the modified loss functions and discussed the directions to improve the

melody extraction accuracy.

• A novel method for melody extraction using joint detection and classification (JDC)

network. We propose a JDC network with a joint melody loss designed to combine the two tasks

together (singing voice detection and pitch classification). This model uses a CRNN architecture

with residual connections and bi-directional long short-term memory (Bi-LSTM) as the main net-

work so that the model classifies the pitch with a high resolution. The auxiliary network that

detects the singing voice is trained using multi-level features shared from the main network.

• Applying the semi-supervised learning (SSL) methods to vocal melody extraction. We

propose a teacher-student model of SSL with the consistency of regularization for vocal melody

extraction. It can leverage large-scale unlabeled music datasets with various audio data augmen-

tation techniques. We investigate e↵ective SSL strategies by exploring joint training, the size of

unlabeled data, and the number of self-training iterations.

• Applying the SSL methods to singing voice activity detection (SVAD). We also apply

our proposed SSL method for the SVAD and reveal that it can be e↵ective for other MIR tasks

that su↵er from the lack of labeled data. We use a hard negative sampling technique and show

that it helps to improve overall performance while reducing false-positive errors.
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Chapter 2. Related Work

2.1 Conventional approaches

Conventional melody extraction algorithms can be broadly classified as three categories according to

approach type: saliency-based approach, source separation–based approach, and data-driven approach.

The general methods of the saliency-based approach exploit saliency functions to calculate the pitch

saliency from the mixture and to estimate possible pitch candidates [6,7,9,10]. The general processes of

the salience-based approaches follows several steps. First of all, some pre-processing steps are applied to

enhance the melody characteristics or harmonic-percussive source separation. Then apply a transform

function such as STFT and find the spectral peak. Among them, find the peaks that could be candidates

for the melody, and then determines the pitch contour. The final step is determining where is the melody

part or not. Source separation-based approaches [11–13] have a strategy to separate the melody source

from multiple source and use a monophonic pitch tracking algorithm to estimate the melody sequence.

While the majority of previous works are associated with the first two approaches, the data-driven

approaches have been rarely explored. This approach predicts a finite set of pitch labels from audio

features. Ellis and Poliner [14] used a support vector machine classifier to predict a pitch label from

the spectrogram. They were the first to demonstrate the utility of classifying pitch labels for melody

extraction. Bittner et al. [15] proposed a method to distinguish a melody using a random forest classifier

from among candidates of several pitch contours obtained from the salience function.

2.2 Deep learning based approaches

Classification-based approach based on deep learning has drawn much attention for melody ex-

traction recently. Various model structures and learning techniques have been proposed so far. Un-

like categorical labels where the distance between labels is non-linear, pitch labels are represented as

a continuous scale. Considering the task-specific characteristics, several variations of categorical loss

functions also have been proposed. In Table 2.1, we provide a summary of the deep learning-based

algorithms. Kum et al. [16] presented a classification-based approach for melody extraction on vocal

segments using multi-column fully-connected neural networks (FNN). In the proposed model, each of

the neural networks is trained to predict a pitch label of singing voice from the spectrogram, but their

outputs have di↵erent pitch resolutions. The final melody contour is inferred by combining the outputs

of the networks and post-processing it with a hidden Markov model. In order to take advantage of the

data-driven approach, they also augmented training data by pitch-shifting the audio content and mod-

ifying the pitch label accordingly. Rigaud and Radenen [17] also proposed an algorithm for estimating

pitches of singing voice using FNN. They also presented singing voice activity detector (SVAD) using

Bidirectional Long Short-Term Memory (BLSTM) with pre-processed features obtained by double-stage

harmonic/percussive source separation (HPSS) Octave error is one of the frequently encountered prob-

lems in melody extraction because of the harmonic similarity of two pitches with octave relations. To

reduce octave mismatch, Park and Yoo [18] proposed harmonic sum loss function by summing each loss

taking into account all possible octave relationships. They used a long short-term memory recurrent

neural network (LSTM-RNN) for extracting melody and voice detection. Basaran et al. [19] proposed
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a convolutional recurrent neural network (CRNN) model to capture the temporal feature and spectral

feature more e↵ectively. To modeling the dominant melody and accompaniment of mixture and obtain

a useful input salience representation, they proposed a source-filter non-negative matrix factorization

(SF-NMF) as a pre-processing for input.

In the proposed algorithm, models using various input features or combining various network struc-

tures were used considering the characteristics of melody extraction rather than using a simple neu-

ral network architecture. Bittner et al. [20] replaced the existing salience function with CNN. The

proposed network uses harmonic constant-Q transform (HCQT) as input representation. HCQT is a

modified 3-dimensional representation of CQT, in which harmonic relation is added from the existing

two-dimensional CQT representation. The network can implicitly learn to generalize many types of har-

monic relationships using harmonic-related representations. They showed their model to be e↵ective in

learning the salience representation for multi-f0 tracking as well as the prediction of f0 of a single melody

in polyphonic audio. Su [21] presented a novel time-frequency representation, Combined frequency and

periodicity (CFP), for input feature which enhances the pitch contours and suppresses the harmonic com-

ponents. From the CFP, the patch-based convolutional neural network (CNN) model classifies whether

the pitch contour corresponding to the patch is a candidate for the song voice melody contour. Lu and

Su [22] proposed semantic segmentation for melody extraction using a deep convolutional neural net-

work (DCNN) with an U-Net architecture. They also adopted domain-adaptive transfer learning from

large-scale symbolic data to audio using melody MIDI files. Hsieh et al. [23] proposed a model similar

to the model structure proposed by [22], but proposed a model using up-pooling between the encoder

and decoder instead of the skip connection to improve localization of melody. Also, encoded features are

utilized to voice detection. Gao et al. [24] utilized MIDI files to extract melody at the semitone level and

then refine the pitch using the salience function to a higher resolution. Chou et al. [25] proposed also

combined two neural networks to imitate human pitch perception. They simulated the spectral model of

pitch perception using CNN with a log frequency spectrogram. To mimic the temporal model, they used

a time-domain autocorrelation through a bank of gammatone filters as the input of the DNN model.

Chen et al. [26] also considered pitch perception to build a neural network model for melody extraction

and proposed a multi-resolution end-to-end model by using 1-D and 2-D CNN with kernels. As such,

various input features and model architectures have been proposed based on human hearing perception.
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Chapter 3. Classification-based Singing Melody Extraction

Using Deep Convolutional Neural Networks

3.1 Introduction

Melody extraction is the task of estimating the fundamental frequency that corresponds to the

melodic line of a polyphonic music. Since melody is the essence of music from which listeners can identify

the piece, melody extraction has been applied to various music information retrieval tasks such as query-

by-humming [29] and cover song identification [30]. In popular music, melody is usually performed by

singers and so the melody extraction task is often recast into detecting the presence of singing voices

and estimating the dominant voice pitch when background music is accompanied. The expressive nature

of the singing melody has been utilized for explaining characteristics of di↵erent music genres [31] or

singers [32] as well. Furthermore, the continuous pitch curves have been incorporated in source separation

algorithms to take vocal and background music apart [13].

A number of melody extraction algorithms, where some of them are particularly for singing voices,

have been proposed so far. They can be broadly classified into three categories according to the approach

type: salience-based, source separation-based, and classification-based ones [6]. While the majority of

previous work are associated with the first two approaches, the data-driven approach based on classi-

fication, which predicts a finite set of pitch labels from audio features, have been rarely explored. An

early work used a support vector machine classifier to predict a pitch label from spectrogram [14]. Since

then, it had been no attempt until Bittner et al. proposed a random forest classifier that predicts pitch

contours from pitch salience features [15].

The lack of the classification-based approach can be attributed to the following reasons. First,

melodic pitch is a physically measurable value as opposed to abstract labels defined in high-level tasks

such as genre or mood classification. Thus, it is more intuitive to directly leverage time-frequency rep-

resentations where the patterns for pitch estimation are observable, as in the saliency-based or source

separation-based approaches. Second, in the classification-based approach, the melodic pitch is supposed

to be quantized to a certain resolution (e.g. semitone in [14]). While this discrete pitch may be useful for

some applications that require a MIDI-level pitch notation, it loses detailed information about singing

styles such as vibrato or note-to-note transition patterns. Third, the classification-based approach typ-

ically requires a su�cient amount of labeled data to achieve good performance. Manual extraction of

melodic pitch in a frame-level is a highly tedious labor, particularly for mixed tracks. This has hindered

the availability of labeled datasets.

In the recent past, however, there have been important changes that have encouraged the classification-

based approach. First, multi-track audio recording data including singing voice as a separate track have

been more available [33–35]. With the multi-track datasets, the melody labels can be obtained more

easily by applying a monophonic pitch detector to the isolated vocal track. Second, deep learning, the

powerful data-driven learning algorithm based on neural networks, has emerged and tremendously ad-

vanced, achieving a remarkable series of state-of-the-art results in numerous tasks. An indispensable

element in the success of deep learning is the availability of large-scale labeled datasets.

Leveraging the datasets and recent advances in deep learning, several classification-based methods

using neural networks have been recently attempted. Rigaud and Radenen proposed to use two types of
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neural networks. One is for detecting singing voice activity built with 3-Bidirectional Long Short-Term

Memory (BLSTM) layers following [36]. The other is for extracting singing pitch composed of 2-hidden

fully connected layers and a softmax layer that discriminates up to an eighth of semi-tone [17]. Comparing

the state-of-the-art salience-based system, Melodia [7], they show significantly improved results. Kum

and Nam proposed multi-column deep neural networks (MC-DNN) where each column network is trained

to predict a pitch label with a di↵erent pitch resolution and the outputs are combined [16]. The results

showed that the ensemble method achieves better performance than a single model and also it returns

a high pitch resolution. Park and Yoo presented a LSTM-based melody classification algorithm where

they added harmonic sum loss to the objective function to incorporate the harmonic structure in melodic

tone [37]. They showed that the harmonic sum loss makes the model more robust to octave mismatch

and interference from background music.

In this work, we propose a singing melody extraction model using deep convolutional neural networks

(DCNN). While DCNN-based models have been shown to achieve state-of-the-art results in many music

information retrieval (MIR) tasks including singing voice detection [38], polyphonic piano transcription

[39], chord recognition [40] and music-auto tagging [41], to the best of our knowledge, they have been not

applied to singing melody extraction yet. In particular, we investigate the importance of pitch resolution

in the singing pitch extractor (SPE). Also, we suggest to use the output of pitch prediction in the SPE

as a mean to suppress voice false alarm errors from the result of the singing voice activity dedtection

(SVAD). Using several public datasets, we show that the proposed method significantly outperforms our

previous work and the overall results are comparable to state-of-the-arts.

3.2 Proposed Methods

FC

singing 
pitch

extractor

singing 
voice activity 

detector

FC

Audio

DCNN

HMM

Voice 
False Alarm 

Detector

Melody Contour

spec.

mel-spec.

11 frames 
� 513 bins

115 frames
� 80 bins

DCNN

Figure 3.1: The diagram of our architecture for melody extraction including singing voice activity

detector.

The proposed melody extraction method is illustrated in Figure 3.1. It is composed by two main

parts. The SPE extracts melody features and predicts its pitch from a short segment of spectrograms
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(11 frames). Then, the output is temporally smoothed by a hidden Markov model (HMM) based post-

processing. The SVAD serves to distinguish singing voice frames from a long segment of mel-spectrograms

(115 frames) and removes melodic contours of the non-voice segments. In addition, the voice false alarm

detector reduces the false positive from the SVAD results by exploiting the output of SPE.

3.2.1 DCNN Model Configuration for the Singing Pitch Extractor

Table 3.1: Configuration of DCNN for the singing pitch extractor

input: SPEC. 11(frames)⇥ 513(bins)

R8 R16 R32 output

block1

64 conv1 (3⇥3) 64⇥11⇥513

64 conv2 (3⇥3) 64⇥11⇥513

average-pool (2⇥1) 64⇥5⇥513

max-pool (1⇥3) 64⇥5⇥171

block2

128 conv3 (3⇥3) 128⇥5⇥171

128 conv4 (3⇥3) 128⇥5⇥171

average-pool (2⇥1) 128⇥2⇥171

max-pool (1⇥3) 128⇥2⇥57

block3

256 conv5 (3⇥3) 256⇥2⇥57

256 conv6 (3⇥3) 256⇥2⇥57

average-pool (2⇥1) 256⇥1⇥57

max-pool (1⇥3) 256⇥1⇥14

block4

512 conv7 (3⇥3) 512⇥1⇥14

256 conv8 (3⇥3) 256⇥1⇥14

max-pool (1⇥7) 256⇥1⇥2

FC 512 1024 2048 -

softmax 361 721 1441 -

The architecture of SPE are summarized in Table 1. The SPE is configured with four convolutional

blocks and one fully connected layer. Each block contains two convolutional layers and two pooling

layers except the last one. The convolution filters have a filter size of 3⇥3 and the number of filters in

the convolutional blocks gradually increases as 64, 128, 256 and up to 512. Then, average-pooling is

applied to the time axis and max-pooling is to the frequency axis. The intuition behind this setting is

that singing pitch is typically continuous and so temporal smoothing by the average maintain the pitch

information better than max-pooling. Experimentally, we confirmed that this actually worked better

than using max-pooling on both axes. We apply batch normalization on each convolutional layer and

use the Leaky ReLU as an activation function for the non-linearity. We include dropout to the end of

each block and use softmax activation function for the output layer. The pitch labels cover from D2

(73.416 Hz) to B5 (987.77 Hz). We quantized the pitch labels on MIDI scale but with high resolutions.
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Rt denotes the resolution in 1/t semitone unit. For example, R1 indicates pitch resolution in semitone

unit. R2, R4, R8, R16 and R32 indicate progressively higher resolutions than semitone by a factor of 2.

We used spectrogram as input for the SPE. We first resampled audio clips to 8 kHz and merged

stereo channels into mono. We then computed spectrogram with Hann window of 1024 samples and hop

size of 80 samples. We compressed the magnitude of the spectrogram in a log scale and used 513 bins

from 0 Hz to 4000 Hz. As in the previous work [16], we took multiple frames of spectrogram as input to

capture contextual information from neighboring frames and use the pitch label at the center position

of the context window. We also experimented with di↵erent sizes of input frames and obtained the best

results at 11 frames in SPE as well. Thus, we fix the input size to 11 frames for all experiments.

3.2.2 DCNN Model Configuration for the Singing Voice Activity Detector

Table 3.2: configuration of DCNN for Singing Voice Activity Detector

input : Mel-Spec 115 (frames) ⇥ 80 (bins)

stride architecture output

block1

1 64 conv1 (3⇥3) 64⇥115⇥80

1 64 conv2 (3⇥3) 64⇥115⇥80

2 maxpool (3⇥3) 64⇥57⇥39

block2

1 128 conv3 (3⇥3) 128⇥57⇥39

1 128 conv4 (3⇥3) 128⇥57⇥39

2 maxpool (3⇥3) 128⇥28⇥19

block3

1 256 conv5 (3⇥3) 256⇥28⇥19

1 256 conv6 (3⇥3) 256⇥28⇥19

2 maxpool (3⇥3) 256⇥13⇥9

block4

1 256 conv7 (3⇥3) 256⇥13⇥9

1 512 conv8 (3⇥3) 512⇥13⇥9

2 maxpool (3⇥3) 512⇥6⇥4

1⇥1 conv

block

1 128 conv (1⇥1) 128⇥6⇥4

1 2 conv (1⇥1) 2⇥6⇥4

- global average-pool 2

Total #params : 2,983,746

The architecture of SVAD is summarized in Table 3.2. The SVAD is configured with four convolu-

tional blocks and 1⇥1 convolutional layer. Each convolution block contains two 3⇥3 convolutional layers

followed by batch normalization. The number of channels in the blocks gradually increases as 64, 128, 256

and up to 512. 3⇥3 max-pooling layers with 2⇥2 stride are used at the end of each convolutional block.

At the final stage of the DCNN model, we used 1⇥1 convolution and global average pooling instead of

fully connected layer. The architecture was inspired by the Network In Network model [42], which has

the advantage of avoiding the problem of overfitting and greatly reducing the amount of computation

without degrading performance. After the DCNN predicts the output, we used a median filter of 110ms

as the final step to perform temporal smoothing [38].

The SVAD takes 115 frames of mel-spectrogram as input to capture contextual information over
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a long time span following [38]. We resampled audio signals to 16kHz and merged stereo channels to

mono. We extracted mel-spectrogram with 80 triangular filters between 0 and 8 kHz, a frame length of

1024, hop size of 160 samples. We compressed the magnitude by a log scale.

3.2.3 Voice False Alarm Detection for the SVAD

The SVAD takes a long segment (115 frames or 1.15 seconds) as input. We observed that the setting

often produces false positive errors around the boundary of melody contours or short pauses between

two melody contours. It is because long input frames taken from the boundary regions contain singing

voice in part and so the SVAD is likely to predict the existence even if there is no voice at the center

position. Therefore, we need to have additional means to minimize the false positive errors by taking a

smaller size of input frames. For this purpose, a method of reducing the errors by detecting sub-semitone

fluctuations has been previously attempted [43]. In this work, we propose a novel method that utilizes

the output of the SPE.

We empirically found that, when the SPE takes non-voiced frames as input and predicts the pitch,

the output was not dominant at a particular class and tends to have a low probability for each class.

This is probably because the model was trained only with voice frames and so the model cannot make

a prediction with high confidence for the unseen input. By exploiting the observation, we add a voice

false alarm detector (VFAD) based on the SPE as follows:

SV FAD(n) =

8
<

:
1 if argmax(ySPE(n)) > ✓

0 if argmax(ySPE(n)) < ✓

where ySPE(n) is the softmax output of SPE at n frame and ✓ is a threshold. We obtain the final

result of singing voice activity, S(n) by incorporating the VFAD into the SVAD:

S(n) = SSV AD(n) · SV FAD(n) (3.1)

where SSV AD(n) is the result of SVAD that returns one for voiced frames or zero for unvoiced frames.

3.2.4 Temporal Smoothing by HMM

After predicting the output in the SPE, we conduct temporal smoothing for the frame-wise pitch

prediction. The procedure was basically borrowed from the Viterbi decoding based on HMM in [14]. The

HMM state corresponds to each of the melody pitch values and the prior probabilities and the transition

matrix are computed from the ground-truth of the training set. As posterior probabilities, the prediction

from the combined output of SPE is used. To generate the prior and transition probabilities, we counted

the number of occurrences and all pitch-to-pitch transition per pitch label, respectively. In addition,

we normalized the transition matrix by replacing each element with the average of its corresponding

diagonal. This alleviates the sparsity problem in the transition matrix obtained from a limited training

set by assuming that all adjacent pitch transitions depend only on their interval rather that absolute

pitch value.

However, even with the normalization, the diagonal components of the transition matrix are still

dominant. Thus, when the pitch di↵erence between consecutive melodies is small, the result of smoothing

tends to keep the same pitch. This leads to the loss of detail changes in the pitch contours. To deal

10



with the problem, we add more weights to o↵-diagonal elements by multiplying a penalty matrix to the

transition matrix as follows:

P = e�D + I (3.2)

Ť = PT (3.3)

where D is the o↵-diagonal matrix of the transition matrix T , whose diagonal elements are zeros.

I is identity matrix. By increasing the value of the o↵-diagonal component, it adjusts the sensitivity to

small pitch changes during the smoothing process.

3.3 Dataset

3.3.1 Training Datasets

We used the RWC and MedleyDB datasets to train the SPE. To train the SVAD model, we used

the Jamendo dataset in addition to the two. We divided them into training and validation splits to tune

the network parameters. To avoid overfitting and select the best performing model, we chose songs such

that genre and gender are evenly distributed over the splits and also the songs of the same singer are

not divided over the splits.

• RWC [44]: 80 Japanese popular songs and 20 American popular songs with singing voice melody

annotations. We divided the dataset into two splits, 85 songs for training and the remaining 15

songs for validation. The total length of the dataset is 407 minutes.

• MedleyDB [34]: 122 songs with a variety of musical genres and 70 of them including vocals with

melody annotations. Among them, we chose 60 songs that are dominated by vocal melody. We

divided the dataset into two splits, 47 songs for training and the remaining 13 songs for validation.

The total length of the dataset is about 200 minutes.

• Jamendo [45]: 93 songs designed for the evaluation of singing voice detection. The training,

validation and test set splits are designated as 61, 16 and 16 songs, respectively. The total length

of the dataset used for training is about 360 minutes.

We also augmented the three datasets to obtain more generalized models. Pitch shifting has proven

to be an e↵ective way to increase data and improve results for singing voice activity detection [38] and

melody extraction [16] as well. To this end, instead of resampling that modifies the pitch and length of

audio clips at the same time [2], we used a phase vocoder method that conducts pitch-shifting independent

of time-stretching [46]. We augmented the training set by applying the pitch-shifting by ±1, 2 semitones,

thereby increasing the data size by five times.

3.3.2 Test Datasets

To evaluate the proposed model, we use publicly available datasets: ADC2004, LabROSA, MIR1k

and iKala. Synthesized sounds or instrument sounds (e.g. ’train13MIDI.wav’ in LabROSA or ’midi1.wav’

in the ADC04 dataset) were excluded from the training data so that both SPE and SVAD focus on singing

voice in polyphonic music. Thus, we used only singing voice songs as test data among the whole datasets.
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• LabROSA1: 13 excerpts that contain Rock, R&B, pop, and jazz songs, as well as audio generated

from a MIDI file. We evaluated our algorithm using 9 songs out of a total of 13 songs.

• ADC20041: 20 excerpts of 20 seconds that contain pop, jazz and opera songs, as well as synthesized

singing and audio from MIDI files. Jazz and MIDI songs were excluded from the evaluation.

• iKala [35]: 262 Chinese songs clips of 30 seconds performed by 6 professional singers.

• MIR-1k [33]: 1000 songs clips with the total duration of 133 minutes. 19 amateur singers (11

males and 8 females) participated in the recording.

3.3.3 Evaluation

We evaluated the proposed method in terms of five metrics, including overall accuracy (OA), raw

pitch accuracy (RPA), raw chroma accuracy (RCA), voicing detection rate (VR) and voicing false alarm

rate (VFA), as detailed in [6]. We compute them using mir-eval, a Python library designed for objective

evaluation in MIR tasks [47]. The evaluation consists of two main parts: voice detection determining

whether a voice is included in a particular time frame (VR and VFA) and pitch detection determining

the most accurate melody pitch for each time frame (RPA, RCA, and OA). We convert the pitch labels,

which were quantized to MIDI scale, back to frequency scale (Hz) to compare them with the ground

truth.

f = 2(m�69)/12 · 440(Hz) (3.4)

wherem is the estimated pitch label. The pitch of the frame is considered correct if the di↵erence between

the estimated pitch frequency and the ground-truth is within ±50 cents (0.5 semitone). In addition, we

progressively reduced the pitch tolerance to ±25, ±12.5 cents. We report the results in order to show

the performance under more strict conditions.

3.4 Experiments

Given the SPE and SVAD models and training data, we conducted several experiments to figure

out the e↵ect of di↵erent settings in the models. In the followings, we describe the experimental setup.

3.4.1 Training Details of DCNNs

We randomly initialized the network parameters using He uniform initialization [48] and trained

them with stochastic gradient descent with Nesterov momentum which was set to 0.9. We iterated

it over all the training data up to 100 epochs. The initial learning rate was set to 0.02. To prevent

overfitting, we applied a dropout ratio of 0.3 after all max-pooling layers. By means of early-stopping

strategy, if the validation accuracy does not increase after 20 iterations, we reset the learning rate to

1/2 of the initial learning rate and repeated the training. We iterate this process five times. For fast

computing, we ran the code using Keras [49], a deep learning library in Python, on a computer with two

GPUs.
1We obtained the LabROSA dataset from the website, http://labrosa.ee.columbia.edu/projects/melody/. This was

used for part of the 2005 MIREX melody extraction task. In our previous work [16], we referred to it as MIREX05.
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3.4.2 Pitch Resolution and Ensemble Models

Our first experiment is to figure out the maximum pitch resolution of the SPE. High pitch resolution

allows the SPE to predict continuous pitch curves, mitigating the pitch quantization problem that the

classification-based approach has intrinsically. In our previous work [16], we progressively increased the

pitch resolution and observed that the performance saturates before R8. With the DCNN-based model,

we conduct the same experiment and find the pitch resolution that provides the best performance.

We also combine multiple neural networks with di↵erent pitch resolutions as we conducted in [16].

We denote SC-SPEr as a single-column DCNN with a pitch resolution Rr and MC-SPEr as an ensemble

model that combines SC-SPEr, SC-SPEr/2 and SC-SPEr/4. We evaluted all the models on two test sets

(ADC2004, LabROSA) and compared the accuracy.

3.4.3 HMM-based Postprocessing

We conducted temporal smoothing of the pitch prediction using the Viterbi decoding. The prior

probabilities and transition matrix were estimated from the ground-truth of the training set. To increase

the value of the o↵-diagonal components, we set the � according to Equation 3.2. We used a set of �

and empirically found that � of 1 yielded the best results.

3.4.4 Singing Voice Activity Detector with VFAD

As mentioned in Chapter 3.2.3, we use the VFAD to reduce false positive frames after the SVAD.

If the maximum softmax output of SPE does not exceed a specific threshold ✓, it is assumed that the

frame is not a singing voice. The threshold ✓ was set to a value between 0 and 0.05 to find the proper

threshold. We used the songs from the ADC04 and LabROSA datasets. We evaluated the performance

in terms of VR, precision, F1 score and VFA. We also compared the performance of the SVAD with

those from state-of-the-art algorithms. We reported the results on the Jamendo dataset as unseen test

data. To evaluate the performance of the SVAD, we compute three common evaluation metrics: VR,

precision, F1 score [50].

3.5 Results

3.5.1 DCNN Models of Melody Extraction

Figure 3.2 shows the RCA on the two test datasets and the classification accuracy of the validation

set with varying pitch resolution. We conducted the experiment by increasing the pitch resolution until

the accuracy becomes saturated. The result shows that the higher the pitch resolution, the lower the

classification accuracy. This is because it is not easy to predict the exact class corresponding to the

reference pitch as the melody extractor has more classes to predict. On the other hand, the RPA on the

test datasets tend to increase as the pitch resolution is higher. Compared to the DNN model which was

saturated at R4 [16], the DCNN model has the best results at R32. This indicates that the DCNN is

more capable of handling high pitch resolutions. However, we should note that higher resolutions require

more network parameters.

Figure 3.3 shows that the MC-SPE models perform better than the SC-SPE models in general,

validating that combining multiple models with di↵erent pitch resolutions is more e↵ective [16]. However,

the e↵ect of using the multi-column models becomes less significant as the pitch resolution increases.
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Figure 3.2: Raw pitch accuracies of test datasets (ADC04 and LabROSA) and classification accuracies

of validation dataset according to the pitch resolution .
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Figure 3.3: Comparison of raw pitch accuracy between SC-SPE and MC-SPE when the pitch resolution

is increasing. RPASC and RPAMC correspond to RPA of SC-SPE and MC-SPE, respectively. MC-SPER

is a network where a model that combines SC-SPER, SC-SPER/2 and SC-SPER/4.

This is clearly indicated by � RPA, the di↵erence of RPA between the two models. For R32 on the

LabROSA, the SC-SPE model is even better the MC-SPE model, achieving the best accuracy. Thus,

considering the ensemble model requires as many parameters as the model size, SC-SPE is seen to be a

more practical choice in the DCNN-based approach.

3.5.2 HMM-based Post-processing

Figure 3.4 show that both RPA and RCA increase by more than 1% on both datasets after the

temporal smoothing. Comparing the di↵erence between RPA and RCA, we can observe that the octave

error decreases significantly. This indicates that the abrupt rise and fall of pitch contours are suppressed.

3.5.3 Singing Voice Activity Detector for Melody Extraction

We compared the performance of the SVAD with VFAD on ADC04 and LabROSA. Table 3.3 shows

the evaluation matrix when ✓ is 0, 0.03, and 0,05. The larger the value of ✓, the smaller the VFA. If the
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threshold is set too high, the F1 score is lowered. Using VFAD does not significantly reduce VFA because

the number of frame is relatively small to be removed by VFAD among the voice frames detected by

the SVAD. However, this process makes it possible to provide more natural melody contours. As shown

in Figure 3.5, the e↵ect of VFAD can be seen by comparing the blue line (obtained from SVAD) with

the yellow line (obtained by further using VFAD). Based on the results from Table 3.3, we set 0.03 as a

trade-o↵.

Final	Result

SVAD

Ground	Truth

VFA	Detector

without	
SVADwith	SVAD
with	VFAD
GT

Figure 3.5: An example of singing voice activity detection with VFAD: (1) The SPE predicts the pitch

over all frames. (2) The SVAD determines the singing voice frames (blue box in the bottom) and removes

non-vocal melody contours (dotted black). However, some melody lines are misidentified as singing voice

(blue line). (3) To reduce the false alarm errors, the VFAD determines non-singing voice frames (red box

in the bottom). (4) Finally, we obtain more elaborate melody contours (yellow line). (5) The ground

truth (black line) is plotted 100Hz below the prediction for visual comparison.

Table 3.4 compares the proposed method to two state-of-the-arts algorithms on 16 songs in the

Jamendo test dataset. The Lehner algorithm is based on LSTM-RNN and the Fluctogram feature to

reduce false positives [51] and the Leglaive algorithm is on BLSTM-RNN [36]. We did not show other

state-of-the-arts algorithm using DCNN due to di↵erent evaluation metrics, for example, [38]. The
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Table 3.3: Comparison of the proposed SVAD performance with the VFAD according to theta value

ADC04 LabROSA

✓ 0 0.03 0.05 0 0.03 0.05

VR 0.861 0.858 0.846 0.891 0.891 0.887

Precision 0.976 0.976 0.977 0.933 0.939 0.945

F1 score 0.915 0.914 0.907 0.912 0.914 0.915

VFA 0.113 0.112 0.106 0.121 0.109 0.097

proposed method has higher precision and lower voice recall than the two. This conservative result in

detecting the voice activity is attributed to the VFAD. However, when we evaluate them according to

the F1 score, the proposed method slightly outperformed the two compared algorithms.

Table 3.4: Comparison of SVAD results on the Jamendo test dataset

VR Precision F1 score

Lehner [51] 0.906 0.898 0.902

Leglaives [36] 0.926 0.895 0.910

Proposed 0.893 0.933 0.913

3.6 Comparison to State-of-the-Art Melody Extraction Meth-

ods

3.6.1 Evaluation Metrics

Table 3.5 compares the proposed method with state-of-the-art algorithms on the four test datasets.

The model used for the final test is SC-SPE32. The melody extraction results of the compared algorithms

were obtained from MIREX2. For ADC04 and MIREX05, we should note that our results are not exactly

comparable to them because we used only songs with vocal and also the LabROSA dataset is a subset

of MIREX05. Also, we did not list recently reported results based on deep learning [17,37] because they

have di↵erent test settings.

The proposed method significantly outperforms our previous multi-column DNN model [16] for three

datasets. The overall accuracy of the proposed model is above 80% for all datasets except MIR-1K. This

might be because the audio files in MIR-1K have poor recording quality. Compared to the results from

MIREX, the proposed method achieved better accuracy except those from Dressler on ADC04 [52]. A

notable result is that the proposed method has significantly low voice false alarm. This may be attributed

to the proposed SVAD that is supported by the VFAD.

3.6.2 Melodia vs. Proposed Method

In general, classification-based approach to melody extraction produces discrete pitch contours,

losing detailed singing information. However, the proposed method can generate nearly continuous

2http://www.music-ir.org/mirex/wiki/MIREX HOME
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Figure 3.6: Comparison of evaluation matrix of LabROSA according to pitch tolerance. The tolerance

value used in the MIREX melody extraction task is 50 cents.

curves by increasing the output resolution up to R32. Therefore, they preserve natural singing styles

such as vibrato or note-to-note transition patterns. In order to confirm the continuity, we obtained the

evaluation results by reducing the pitch tolerance to ±25, ±12.5 cents, and compared them with the

results from Melodia, a saliency-based algorithm that generates the continuous pitch curves [7]. Figure

3.6 shows that the proposed method (SC-SPE) achieves 5 to 10% higher than Melodia although the

performance becomes worse for smaller tolerance. Figure 3.7 compares an example of pitch contours,

each from Meloida and the proposed method. This illustrates more intuitively that the proposed method

produces highly continuous curves that are similar to the ground-truth in Hz.
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Figure 3.7: Comparison of pitch contours for the ’opera fem4.wav’ of ADC04. The reference pitch was

plotted below 140 Hz for visual comparison.
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3.7 Conclusions

We proposed a novel melody extraction algorithm composed of singing pitch detector and singing

voice activity detector using deep convolution neural networks. We have shown that the SPE can

e↵ectively extract melody features and classify pitch classes. Since the pitch can be predicted with a

high resolution, the classification-based algorithm can produce nearly continuous curves. The multi-

column method for predicting pitches of various resolutions can improve performance in DCNN, but

the e↵ect becomes less significant as the pitch resolution is higher. We propose a high performance

SVAD with VFAD to minimizes false positive errors. Finally, we compared our melody extraction model

to previous state-of-the-arts methods on several public test dataset and showed that the results are

comparable to those from the best.
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Table 3.5: Comparison of Melody Extraction Results

(a) ADC04

Method OA RPA RCA VR VFA

Dressler [52] 0.853 0.883 0.889 0.901 0.158

Arora et al. [10] 0.690 0.814 0.859 0.765 0.235

Bosch et al. [53] 0.697 0.767 0.799 0.776 0.202

Salamon et al. [7] 0.740 0.772 0.794 0.806 0.152

Ikemiya et al. [13] 0.719 0.814 0.846 0.849 0.435

Kum et al. [16] 0.731 0.758 0.783 0.889 0.412

Proposed 0.811 0.798 0.802 0.859 0.112

(b) MIREX05

Method OA RPA RCA VR VFA

Dressler [52] 0.715 0.770 0.806 0.831 0.300

Arora et al. [10] 0.634 0.692 0.765 0.810 0.344

Bosch et al. [53] 0.637 0.688 0.7338 0.791 0.385

Salamon et al. [7] 0.676 0.698 0.769 0.776 0.239

Ikemiya et al. [13] 0.674 0.764 0.815 0.945 0.557

LabROSA

Kum et al. [16] 0.684 0.776 0.786 0.870 0.490

Proposed 0.859 0.842 0.844 0.891 0.109

(c) MIR-1k

Method OA RPA RCA VR VFA

Kum et al. 0.613 0.726 0.770 0.934 0.658

Proposed 0.741 0.718 0.749 0.817 0.196

(d) iKala

Method OA RPA RCA VR VFA

Proposed 0.811 0.769 0.773 0.849 0.085
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Chapter 4. Comparison of loss functions for

classification-based melody extraction

4.1 Introduction

Melody extraction is the task of estimating the fundamental frequency of melodic source in music.

In popular music, melody is usually performed by the main vocal and thus the task is often recast

into estimating the pitch of the singer when background music is accompanied. The melodic source is

usually mixed to be louder than other instruments in music production [54]. Thus, on a time-frequency

representation of the mixture, it appears to have predominant harmonic patterns. Many of previous

melody extraction algorithms focused on leveraging the prior knowledge, for example, by computing the

pitch salience and tracking the melodic source using a set of rules or classifiers on it [7, 21].

On the other hand, the black-box approach that predicts the melodic pitch by data-driven learning

algorithms has drawn much attentions recently, as deep learning has become successful [16,20,37]. They

typically form the melody extraction task as a multi-class classification problem that choose one out of

the possible pitch values. Specifically, the continuous pitch range of the melodic source is quantized such

that the resolution is su�ciently high and the ground truth pitch is represented as an one-hot vector

representation after the quantization.

Unlike categorical labels such as music genres or image objects, however, pitch is a scale value

that continuously increases or decreases, and thus small deviations (e.g., less than 50 cents) in pitch

prediction can be more acceptable than large di↵erences. Also, the distance in pitch scale is highly non-

linear. For example, harmonically related pitch ratios, such as 1:2 (octave) or 1:4 (double octave) are

closer than other ratios that have less absolute di↵erences (e.g. the triton). In fact, octave errors in pitch

detection is very common due to the overlap of harmonics patterns in a time-frequency representation [6].

Considering the unique characteristics of pitch label, some of classification-based melody extraction (or

pitch estimation) algorithms modified the loss functions. For example, Bitnner et al. [20] used a Gaussian-

blurred one-hot label that mitigates the loss for small pitch deviations around the ground truth. Park and

Yoo [37] proposed the harmonic sum loss that includes an additional term that penalizes harmonically

close pitch predictions more to reduce the octave errors.

Another issue is that the pitch distribution of melodic sources is not even in music. In general, the

mid range has a higher level than the low or high range in pitch distribution, typically having a Gaussian

bell shape [14]. This label imbalance is common in other domains as well. This issue is often addressed

by putting more weights for less frequent labels. Recently, Lin et al. proposed the focal loss to solve the

class imbalance problem in object detection and showed improved performance [55]. The focal loss was

applied to melody extraction as well [56].

Although the modified loss functions are claimed to be more e↵ective than the standard categorical

cross-entropy, there has been no study that compares them together in the same model and experimental

setting. In this paper, we evaluate each of the loss functions using two classification models; one is based

on Convolutional Neural Network (CNN) and the other is on Convolutional Recurrent Neural Network

(CRNN). In addition, we propose variations of the modified loss functions. Through the performance

comparison of the loss functions, we will discuss the directions to improve the melody extraction accuracy

in di↵erent training and test scenarios.
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Figure 4.1: CNN and CRNN architectures for melody extraction. The max-pooling operations in

the convolutional blocks are conducted along the frequency axis only while preserving the temporal

dimensionality.

4.2 Methods

4.2.1 Learning Models

The architectures of the CNN and CRNN models for melody extraction are shown in Figure 4.1

and Table 4.1. We designed the convolutional blocks in a VGGNet style [57]. That is, the networks are

configured with four convolutional blocks and each block contains two convolutional layers and the size

of the filter is 3⇥3. However, we should note that max-pooling is applied only to the frequency axis with

pooling size (1⇥4) while preserving the time-wise dimensionality. A time-distributed fully connected

layer (TD-FC) and a Bi-directional Long Short Term Memory (Bi-LSTM) on top of the convolutional

blocks still preserves the input size. Finally, we compute the loss function separately on each frame of

the time-distributed softmax layer output and the pitch labels, and then add them up to obtain the

final loss function. We used batch normalization on each convolutional layer and the Leaky ReLU as an

activation function. We also included the dropout at the end of the block to alleviate overfitting.

4.2.2 Existing Loss Functions

CE with Gaussian-blurred one-hot label vector (CEG)

When the categorical Cross-Entropy (CE) is used as a loss function, the one-hot vector representation

of pitch labels returns the same loss unless the predicted pitch exactly matches the pitch label with a
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Output size CNN CRNN

input 31⇥513 -

conv1 31⇥128 [3⇥3,64]⇥2

conv2 31⇥32 [3⇥3,128]⇥2

conv3 31⇥8 [3⇥3,256]⇥2

conv4 31⇥2 [3⇥3,256]⇥2

TD-FC 31 ⇥ 2048 1024 -

Bi-LSTM 31 ⇥ 512 - 256

TD-FC 31⇥721 721

softmax 31⇥721 721

Table 4.1: CNN and CRNN model Configurations.

high pitch resolution. To address the issue, attenuating the penalty for near-correct predictions has

been introduced [20, 58]. They implemented it by conducting Gaussian-blurring on the one-hot vectors.

Specifically, they defined the CE between the prediction ŷ and the Gaussian-blurred labels yg as below:

L = LCE(yg, ŷ) (4.1)

yg(i) =

(
exp(� (ci�ctrue)

2

2�2
g

) if |ci � ctrue|  M,

0 otherwise,
(4.2)

where LCE(y, ŷ) is the cross-entropy loss for the pitch prediction ŷ. ctrue is the constant index of the

true pitch and ci is a variable index. M determines the number of non-zero elements. We set M to 2 in

our experiment.

Harmonic Sum Loss (HSL)

The octave error is very common in pitch estimation because two pitches with octave relations

are harmonically close to each other. The harmonic sum loss was proposed to reduce such octave

mismatch [18]. They considered all possible octave relations (e.g. 2, 1/2, 4, 1/4, ... ) and implemented

it by adding a separate loss as below:

L = LCE(y, ŷ) + �hLHS(yh, ŷ) (4.3)

LHS(yh, ŷ) = yT
h · ŷ (4.4)

yh(i) =

8
>><

>>:

1 if mod(ci, L) = mod(ctrue, L)

and ci 6= ctrue,

0 otherwise,

(4.5)

where L is an integer by which one octave is apart on the target label, �h is a balancing weight, and yh

is the one-hot vector with a value of 1 for all octave frequencies of y. ctrue is the constant index of the

true pitch and ci is a variable index.
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Focal loss (FL)

The focal loss was proposed to focus on training minor classes by down-weighting dominant examples

in imbalanced datasets [55]. This imbalance is typical in pitch distributions so that it can be e↵ective in

melody extraction [56]. The focal loss Lf is defined as below:

Lf (y, ŷ) = �↵(1� ŷ)�yT · log(ŷ) (4.6)

where ↵ is a weighting factor and we set ↵ = 0.25, � = 2 in this work. (1� ŷ)� is a modulating factor

to suppress high prediction probabilities.

4.2.3 Proposed Loss Functions

Gaussian-blurred Pitch Loss (GPL)

The Gaussian-blurred pitch loss is a modified version of CEG. This implements the loss attenuation

of nearly-correct pitch predictions as a separate loss terms as done in HSL. The attenuation loss term is

defined as below:

L = LCE(y, ŷ)� �pLGP (yg, ŷ) (4.7)

LGP (yg, ŷ) = yT
g · ŷ���ŷ

���
2

(4.8)

where yg is the Gaussian-blurred one-hot vector defined in Equation 4.2, �p is a balancing weight and���y
���
2
indicates L2 normalization.

Gaussian-blurred Octave Loss (GOL)

Another variation is based on combining CEG and HSL. That is, we discourage pitch predictions

with octave errors considering nearby pitches as well. In this loss, however, we counted only one octave

up or down with regard to the target pitch as errors with more than two octaves did not make much

contributes in our preliminary experiment. Therefore, we implemented the Gaussian-blurred octave loss

as below:

L = LCE(y, ŷ) + �oLGO(yo, ŷ) (4.9)

LGO(yo, ŷ) = yT
o · ŷ���ŷ

���
2

(4.10)

yo(i) =

8
>><

>>:

exp(� (ci�ctrue0)2
2�2

o
) if |ci � ctrue0|  M,

and ci 6= ctrue0,
0 otherwise,

(4.11)

ctrue0 2 {ctrue, ctrue oct+ , ctrue oct�} (4.12)

where yo is the Gaussian-blurred there-hot vector where the left and the right correspond to octave-up

(ctrue oct+) and -down (ctrue oct�) of the target pitch (ctrue). �o is a balancing weight.

23



4.3 Experiments

4.3.1 Dataset

We used the RWCmusic database [44] as a primary dataset to evaluate the models and loss functions.

It has 80 Japanese popular songs and 20 American popular songs with singing voice melody annotations.

We divided it into three splits, 70 songs for training, 15 songs for validation and the remaining 15 songs

for test. We carefully selected the songs so that genres and genders are evenly distributed for each split

and also the songs of the same singer are not included in the other splits. To train the models, we

augmented the training set by pitch-shifting ±1, 2 semitones. We also used ADC2004 and LabROSA1 to

test the models on unseen datasets. To focus on vocal melody extraction, we excluded non-vocal audio

clips.

4.3.2 Training

We first resampled the audio files to 16 kHz and merged into mono channel in the time domain. We

then computed spectrogrm using a 1024 point Hann window and a hop size of 160 samples (10ms) and

compressed the magnitude of the spectrogram in a log scale. To train the models, we selected only the

segments where all frames have corresponding pitch values. The pitch labels range from D2 to B5. We

quantized the pitch range such that one semitone is divided into 16 steps. As a result, each pitch value

is represented as a 721-dimensional one-hot vector. We initialized the network parameters using the He

technique [48] and minimized the loss functions using Adam. We set the initial learning rate to 0.001,

and adopted the early-stopping strategy. We conducted out experiment using Keras on on a machine

with two GTX 1080 Ti GPUs.

4.3.3 Evaluation Metrics

To compare the loss functions, we tested the models only for voiced frames. Therefore, we primarily

used the raw pitch accuracy (RPA), raw chroma accuracy (RCA), and di↵erence between RPA and

RCA as evaluation metrics. After predicting pitch for all frames, we converted the quantized pitch

labels to frequency scale f (Hz) to compare them to the ground truth pitch. The predicted pitch is

considered correct if the di↵erence between the prediction and the ground-truth is within ±50 cents (0.5

semitone). We calculated them using mir-eval, a Python library designed for objective evaluation in

Music Information Retrieval (MIR) tasks [47].

4.4 Results & Discussion

Table 4.2 shows the melody extraction results for the evaluated loss functions, including the baseline

loss (i.e., the standard CE with one-hot vector) on the test datasets. All conditions were identical during

training, and only the loss functions were changed for fair comparison. The overall results show that

the modified loss functions generally outperform the baseline indicating that any of the modifications is

toward a right direction to improve the performance. CRNN generally outperforms CNN regardless of

the loss functions and the di↵erence between RCA and RPA is also smaller in CRNN. This confirms that

learning temporal dependency in the upper layer is e↵ective for estimating pitch as well as for reducing

the octave error by bolstering temporal continuity. Interestingly, the performance gaps among the loss

1http://labrosa.ee.columbia.edu/projects/melody/
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RWC ADC04 LabROSA

RPA RCA di↵(%) RPA RCA di↵(%) RPA RCA di↵(%)

CE 0.8390 0.8781 3.91 0.7737 0.8228 4.91 0.8518 0.8806 2.88

CEG 0.8726 0.8918 1.92 0.8292 0.8498 2.06 0.8786 0.8891 1.05

GPL 0.8658 0.8859 2.00 0.8156 0.8558 4.01 0.8855 0.9010 1.55

HSL 0.8471 0.8817 3.46 0.7774 0.8229 4.55 0.8543 0.8801 2.58

GOL 0.8657 0.8865 2.08 0.8187 0.8577 3.90 0.8868 0.9052 1.84

FL 0.8829 0.8961 1.32 0.8283 0.8497 2.15 0.8926 0.9014 0.88

(a) CNN model

RWC ADC04 LabROSA

RPA RCA di↵(%) RPA RCA di↵(%) RPA RCA di↵(%)

CE 0.8858 0.8992 1.34 0.8145 0.8371 2.26 0.8909 0.9016 1.08

CEG 0.8956 0.9082 1.26 0.8412 0.8597 1.85 0.9039 0.9113 0.74

GPL 0.8903 0.9006 1.03 0.8455 0.8598 1.42 0.9053 0.9092 0.39

HSL 0.8867 0.9007 1.40 0.8381 0.8560 1.79 0.9013 0.9059 0.46

GOL 0.8820 0.8912 0.92 0.8394 0.8556 1.62 0.9115 0.9142 0.27

FL 0.8978 0.9050 0.72 0.8320 0.8644 2.24 0.9035 0.9093 0.58

(b) CRNN model

Table 4.2: Comparison of loss functions for melody extraction in the CNN and CRNN models. Note

that the models were evaluated on voiced frames only to focus on the comparison.

functions are also reduced in the CRNN model. In the followings, we discuss more detail about how the

loss functions influence the performance.

• Gaussian-blurring: CEG and GPL include the Gaussian-blurred target label but with di↵erent

implementations. While both of them improve the accuracies, the results are slightly di↵erent

depending on the models and whether the training set and test set are from the same dataset.

In RWC, CEG generally performs better than GPL. In the unseen datasets (ADC04, LabROSA),

however, GPL achieves higher accuracies than CEG especially in the CRNN model.

• Penalty loss for octave errors: HSL and GOL have an additional penalty for octave errors.

The results in Table 4.2 show that the octave loss functions help the discriminative learning in

both CNN and CRNN models. HSL achieves higher accuracies than GOL in RWC with the CRNN

model. In the unseen dataset, however, GOL are generally better than HSL.

• Weighting of imbalanced dataset: The results of the focal loss (FL) show notable improvements

in both CNN and CRNN models. Particularly, in RWC where the training set and test set are

from the same dataset, FL outperforms other loss functions in RPA and the di↵erence between

RPA and RCA. On the other hand, in the unseen test sets, FL is not consistently prominent.

This may be explained by the fact that FL was designed based on the statistical property of data

whereas other loss functions were based on domain knowledge in melody extraction. In other

words, the statistically-driven loss is more e↵ective when the training set and the test set are

homogeneous, whereas the knowledge-driven losses better overcome the discrepancy when the two

sets are heterogeneous. This indicates that the focal loss is a recommended choice if the size of
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training set with pitch labels is su�ciently large. Otherwise, the knowledge-driven loss functions

(GPL, GOL, and CEG) can be better alternatives.

4.5 Conclusion

In this paper, we have reviewed the loss functions (CEG, HSL, FL) used in the melody extraction

task so far and also proposed the two variations (GPL, GOL). We showed that modified loss functions

are generally better than the standard cross-entropy loss. There was no single best one for all test sets.

However, if the training data with pitch label is su�ciently large, the statistically-driven loss (FL) is

recommended. Otherwise, the knowledge-driven loss (GPL, GOL or CEG) can be better choices.
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Chapter 5. Joint Detection and Classification of Singing Voice

Melody Using Convolutional Recurrent Neural Networks

5.1 Introduction

Melody extraction is estimating the fundamental frequency or pitch corresponding to the melody

source. In popular music, the singing voice is commonly the main melodic source; thus, extracting the

pitch of the singing voice in polyphonic music is the most common task. The extracted melody is useful

in many ways. For example, the result can be directly applied to melody-based retrieval tasks such as

query-by-humming [59] or cover song identification [30]. The pitch contour that contains the unique

expressiveness of individual songs can be used as a feature for high-level tasks such as di↵erent music

genre classification [31] or singer identification [32].

Singing voices are usually mixed to be louder than background music played with musical instru-

ments in music production [54]. Furthermore, singing voices generally have di↵erent characteristics from

those of music instruments; they have expressive vibrato and various formant patterns unique to vocal

singing. A number of previous methods exploit the dominant and unique spectral patterns for melody

extraction leveraging prior knowledge and heuristics. For example, they include calculating the pitch

salience [6, 9, 53, 60, 61] or separating the melody source [11–13] to estimate the fundamental frequen-

cies of melody. In contrast, a data-driven approach using machine learning [2] has also been proposed.

Recently, deep learning has been the main approach, as it has proven to be very successful in a wide

variety of fields. Researchers have attempted various deep neural network architectures for melody

extraction. Examples include fully-connected neural networks (FNN) [16, 17], convolutional neural net-

works (CNN) [20,62], recurrent neural networks (RNN) [37], convolutional recurrent neural networks

(CRNN) [19], and encoder-decoder [22, 28].

Singing melody extraction involves detecting voice segments because the melodic source is not always

active in the music track. Voice detection is a very important task that a↵ects the performance of

melody extraction. The methods for singing voice detection can be roughly divided into three approaches.

One approach is detecting the voice segments by thresholding the likelihood of pitch estimation [16,20,62].

This method is very simple, but more inaccurate because the optimal threshold value may vary depending

on the level ratio between the voice and background sound. Another approach is constructing a separate

model for singing voice detection [17, 61]. Since the model is dedicated to the voice detection, it can

achieve better performance. However, it is obvious that it takes more e↵ort to train the model separately,

and the complexity of the whole melody extraction algorithm increases. The last approach is adding an

explicit “non-voice” label to a list of target pitch outputs. This is particularly valid in classification-based

melody extraction methods [19,25,37]. When singing voice is present, one of the target pitches is chosen

as an output class. Otherwise, the “non-voice” label is chosen as another output class. This “none of

the above” labeling method is also known to have a regularization e↵ect [63].

Our proposed melody extraction model is based on the last approach. However, we pay attention

to the discrepancy of the abstraction level between voice detection and pitch classification. Voice detec-

tion is mainly based on vibrato or formant modulation patterns that distinguish it from other musical

instruments. This requires a much wider context than identifying pitch from voice segments, which can

be estimated even from a single frame of audio. That is, the voice/non-voice discrimination is a higher-
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level task than the pitch classification. We handle this dual-target problem using a joint detection and

classification (JDC) network. JDC can be regarded as multi-task learning [64]. It has been shown to

improve generalization by combining task-specific information contained in network parameters for each

related task. In the area of music or audio, it has been applied to tasks such as source separation [65,66]

and bird audio detection [67]. In both tasks, detecting the source of interest, that is vocal or bird sound,

is an important subtask that a↵ects the performance of the main task. An additional network was built

to detect vocal or bird sound and was integrated with the main network to improve the performance.

Likewise, we also added an auxiliary network (AUX) trained to detect singing voice on top of the main

melody extraction network.

In summary, the contributions of this paper are as follow: first, we propose a CRNN architecture

with residual connections and bi-directional long short-term memory (Bi-LSTM) as the main network

so that the model classifies the pitch with a high resolution. Second, beyond the melody classification

model, we propose a JDC network that can perform two tasks in melody extraction (singing voice

detection and pitch classification) independently. The auxiliary network that detects the singing voice is

trained using multi-level features shared from the main network. Third, we propose a joint melody loss

designed to combine the two tasks together for the JDC network and to be e↵ective for generalization

of the model. Finally, by comparing the results on public test sets, we show that the proposed method

outperforms state-of-the-art algorithms. Code and the pre-trained model used in this paper are available

at https://github.com/keums/melodyExtraction_JDC.

5.2 Proposed Method

Figure 5.1 illustrates the overall architecture of the proposed singing melody extraction model.

This section describes the details.

5.2.1 The Main Network

Architecture

The main network is the central part that extracts singing melody from polyphonic music audio.

The architecture was built with 1 ConvBlock, 3 ResBlocks, 1 PoolBlock, and a bi-directional long short-

term memory (Bi-LSTM) layer. The diagram of the architecture is shown in Figure 5.1a. The parameters

and output sizes of the modules are listed in Table 5.1. ConvBlock is a module consisting of two 3 ⇥ 3

convolutional (Conv) layers, with a batch normalization (BN) layer [68] and a leaky rectified linear unit

(LReLU) between them [69].

ResBlock is a variation of ConvBlock that has an additional BN/LReLU, a max-pooling (MaxPool)

layer with a pooling size of four, and a skip connection, inspired by ResNet of a full pre-activation

version [70]. The max-pooling was only conducted in the frequency axis throughout all blocks; therefore,

it preserved the input size (31 frames) in the time axis. The skip connection had an 1 ⇥ 1 convolution

layer to match the dimensionality between two feature maps. PoolBlock was another module that consists

of BN, LReLU, and MaxPool. The dropout rate of 50% was added in the end of the PoolBlock to alleviate

overfitting. Finally, the Bi-LSTM layer took 31 frames of features (2 ⇥ 256) from the convolution blocks

(note that the max-pooling preserved the input size) and predicted pitch labels via the softmax function

in a sequence-to-sequence manner.

We experimented with di↵erent kernel sizes of 1D or 2D convolution, but 2D-convolution with
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Figure 5.1: Overview of the architecture and joint melody loss (a) CRNN architectures of the main

network and joint detection and classification (JDC) network for melody extraction. ConvBlock is

organized in the order of ‘Conv-BN-leaky rectified linear unit (LReLU)-Conv’, and PoolBlock is in

the order of ‘BN-LReLU-MaxPool’. We denote max-pooling and concatenation as “MP” and “C”,

respectively. The max-pooling is applied only to the frequency axis while preserving the time-wise

dimensionality. (b) The diagram of the ResNet block (c) The block diagram of joint melody loss. om

is the softmax output of the melody from the main network. omv and ov are the softmax output of

the singing voice activity from the main network and auxiliary network, respectively. “V” and “NV”

indicate voice and non-voice, respectively.

3 ⇥ 3 filters was the most e↵ective for melody extraction. Veit [71] showed that residual networks can

be viewed as a collection of many paths. The skip connection allowed the output of each layer to be

input into all subsequent blocks connected, and it made a residual network ensemble system. In our

experiments, ResNet model achieved better results compared to the VGGNet [57] model. We used a

total of three ResBlocks in this model. Reducing the number of ResBlocks resulted in lower performance.

On the other hand, when we increased the number of ResBlocks, we could not see any noticeable

performance improvement. This shows that very high-level features are not required to predict the pitch

of the frame in the spectrogram.

The pitch labels ranged from D2 (73.416 Hz) to B5 (987.77 Hz) with a resolution of 1/16 semitone

(i.e., 6.25 cents). Furthermore, “non-voice” (or “zero-pitch”) was added to the pitch labels. This special

label was active when the singing voice was not present. Therefore, the total number of labels (the size

of the output layer) became 722. The main network used spectrograms as input data. Specifically, we

merged audio files into a mono channel and down-sampled those to below 8 kHz, in which the majority
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Table 5.1: Model configurations of the main and joint networks. ConvBlock and ResBlock have two

convolutional layers; [n⇥ n, k] denotes a convolutional operator of n filters and a kernel size of k.

Components Output Size

Main Main + AUX Main Main + AUX

Input - 31 ⇥ 513

Conv block [3 ⇥ 3, 64] ⇥ 2 31 ⇥ 513, 64

ResNet Block 1 [3 ⇥ 3, 128] ⇥ 2 31 ⇥ 128, 128

ResNet Block 2 [3 ⇥ 3, 192] ⇥ 2 31 ⇥ 32, 192

ResNet Block 3 [3 ⇥ 3, 256] ⇥ 2 31 ⇥ 8, 256

Pool block - 31 ⇥ 2, 256

Bi-LSTM 256 256 + 32 31 ⇥ 512 31 ⇥ (512 + 64)

FC 722 722 + 2 31 ⇥ 722 31 ⇥ (722 + 2)

of the singing voice spectrum is distributed. We used a 1024-point Hann window and a hop size of 80

samples (10 ms) to compute the spectrogram and compressed the magnitude in a log scale. Finally, we

used 513 bins from 0 Hz–4000 Hz and 31 consecutive frames as the input of the main network.

Loss Function

We quantized the continuous scale of the pitch range into a discrete set of values to form the output

layer in a classification setting. They are often represented as a one-hot vector to incorporate it into the

categorical cross entropy (CE) loss function [16,17]. One problem of the loss function is that, unless the

predicted pitch is close enough to the ground-truth pitch within the quantization size (6.25 cents in our

case), it is regarded as the “wrong class”. In order to mitigate excessive loss for neighboring pitches of

the ground truth, a Gaussian-blurred version of one-hot vector was proposed [20, 58]. We also adopted

this version, so the loss function of the main network (Lpitch) was defined between the prediction ŷ and

the Gaussian-blurred labels yg as below:

Lpitch = CE(yg, ŷ) (5.1)

yg(i) =

(
exp(� (ci�ctrue)

2

2�2
g

) if ctrue 6= 0 and |ci � ctrue|  M,

0 otherwise,
(5.2)

where CE(yg, ŷ) is the cross-entropy loss for the pitch prediction. ctrue is the constant index of the true

pitch, and ci is a variable index. M determines the number of non-zero elements. We set M to three

and �g to one in our experiment.

5.2.2 Joint Detection and Classification Network

Architecture

The output layer of the main network was formed with pitch labels and a special non-voice label.

These labels were handled as a set of classes in the same level. Although voice detection and pitch

estimation in the melody extraction task have a close relationship, they require di↵erent levels of ab-

straction, as mentioned in Section 5.1. In pitch estimation, the network predicts a continuously-varying

30



value of pitch at each frame, although it uses contextual information from neighboring frames. In voice

detection, the network predicts the sustained binary status of voice from textures that can be obtained

from a wider context, such as vibrato or formant modulation. Therefore, simply adding a non-voice label

to the target pitch labels has limitations in extracting the characteristics of voice activity.

In order to address the discrepancy between the pitch estimation and voice detection, we propose

a joint detection and classification (JDC) network. We set up the JDC network so that the two tasks

shared the modules. Instead of building it with new modules, we maintained the existing main network

and added a branch for dedicated singing voice detection. As shown in Figure 5.1a, the JDC network

shared ConvBlock, ResBlock, and PoolBlock in the bottom, but had a separate Bi-LSTM module for

each task. In particular, the voice detection task took the combined features of the shared modules

from the main network. The use of multi-level features stemmed from the idea that voice detection

may require observing diverse textures in di↵erent levels of abstraction. The outputs of ResBlock were

max-pooled to match the output size, and then, they were concatenated. The Bi-LSTM layer predicted

the probabilities that there was a singing voice from the concatenated features in a sequence-to-sequence

manner via the softmax function. We call this an auxiliary network. The features from convolutional

blocks were learned jointly using the main and auxiliary network, and the loss function was combined

with that derived from the main network to form the final loss function. The detail is described in the

next section.

Joint Loss Function

The JDC model was optimized by minimizing a joint melody loss that combines the two loss functions

from the main network and the auxiliary network, respectively, as illustrated in Figure 5.1c. We detected

the singing voice using both networks. That is, we summed the 721 pitch predictions in the output of the

main network, om, and converted them to a single “voice” prediction. This resulted in the voice detection

output from the main network, omv. We then added this to the output of the auxiliary network, ov, to

make a decision for voice detection as below:

osv = omv + ov (5.3)

Then, the loss function for voice detection was defined as the cross-entropy between the sum of the

voice output and the ground truth vgt:

Lvoice = CE(softmax(osv),vgt) (5.4)

Finally, the joint melody loss function was given by combining the loss function for voice detection

(Lvoice) and the loss function for pitch estimation (Lpitch):

Ljoint = Lpitch + ↵Lvoice (5.5)

where ↵ is a balancing weight, and we used ↵ = 0.5 in our experiment (In our initial experiment, we tried

three di↵erent values of ↵ (0.1, 0.5, and 1) and achieved the best overall accuracy with 0.5 on the test

datasets. Then, we fixed ↵ = 0.5 in the rest of the experiments. This might not be optimal, and selecting

an optimal value could improve the result.).
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5.3 Experiments

5.3.1 Datasets

Train Datasets

We used the following three datasets to train the models. The songs were carefully selected so that

genres and singer genders were evenly distributed for each split and songs from the same singer were not

included in the other splits.

• RWC [44]: 80 Japanese popular songs and 20 American popular songs with singing voice melody

annotations. We divided the dataset into three splits: 70 songs for training, 15 songs for validation,

and the remaining 15 songs for testing.

• MedleyDB [34]: 122 songs with a variety of musical genres. Among them, we chose 61 songs that

are dominated by vocal melody. We divided the dataset into three splits: 37 songs for training,

10 songs for validation and 12 songs for testing. For a comparison of results under the same

conditions, we selected the training sets according to [62].

• iKala [35]: 262 Chinese songs clips of 30 s performed by six professional singers. We divided the

dataset into two splits: 235 songs for training and 27 songs for validation.

We augmented the training sets by conducting pitch-shift on the original audio files by ±1, 2 semitones

to obtain more generalized models. Pitch-shifting has proven to be an e↵ective way to increase data

and improve results for singing voice activity detection [38], as well as melody extraction [16]. To this

end, we used an algorithm based on a phase vocoder that conducts pitch-shifting independent of time-

stretching [46].

Test Datasets

Four datasets (ADC04, MIREX05 (http://labrosa.ee.columbia.edu/projects/melody/), Med-

leyDB, and RWC) to evaluate the performance of melody extraction were used. Non-vocal audio clips

were excluded to focus on vocal melody extraction. To compare the voice detection performance, our

models were also evaluated using Jamendo [45], a public dataset that is mainly used for singing voice

detection.

• ADC04: 20 excerpts of 20 s that contain pop, jazz, and opera songs, as well as synthesized singing

and audio from MIDI files. Jazz and MIDI songs were excluded from the evaluation.

• MIREX05: 13 excerpts that contain rock, R&B, pop, and jazz songs, as well as audio generated

from a MIDI file. We used 12 songs out of a total of 20, excluding jazz and MIDI files for evaluation.

• MedleyDB: 12 songs not included in the training set. For a comparison of results under the same

conditions, we selected the test sets according to [62].

• RWC: 15 songs not included in the training set. This was used internally to evaluate the perfor-

mance of the proposed models.

• Jamendo: 93 songs designed for the evaluation of singing voice detection. Among them, only

16 songs designated as a test set to measure the performance of singing voice detection were used.
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5.3.2 Evaluation

We evaluated the proposed method in terms of five metrics, including overall accuracy (OA),

raw pitch accuracy (RPA), raw chroma accuracy (RCA), voicing detection rate (VR), and voicing false

alarm rate (VFA). The measures are defined as below:

RPA, RCA =
#{voice frames for which (pitches, chromas) are predicted correctly}

# of voiced frames
(5.6)

OA =
#{frames for which pitches and voicing are predicted correctly}

# of all frames
(5.7)

VR =
#{voiced frames for which voicing are predicted correctly}

# of voiced frames
(5.8)

VFA =
#{frames that are predicted as voiced, but not actually voiced}

# of unvoiced frames
(5.9)

The evaluation consists of two main parts: voice detection determining whether the voice is included

in a particular time frame (VR and VFA) and pitch estimation determining the melody pitch for each

time frame (RPA, RCA). OA is the combined accuracy of pitch estimation and voice detection. We

converted the quantized pitch labels in 6.25 cents (1/16 semitone) to frequency scales (Hz) to compare

them with the ground truth.

f = 2(m�69)/12 ⇥ 440 (Hz) (5.10)

where m is the MIDI note number estimated by the main network for melody extraction. The pitch at

each frame was considered correct if the di↵erence between the estimated pitch and the ground-truth

pitch was within a tolerance of ±50 cents. We computed them using mir-eval, a Python library designed

for objective evaluation in MIR tasks [47].

5.3.3 Training Detail

We randomly initialized the network parameters using He uniform initialization [48] and trained

them with the Adam optimizer. We repeated it over all the training data up to 45 epochs. The initial

learning rate was set to 0.002. If the validation loss did not decrease within three epochs, the learning

rate was reset to 80% of the previous value. Furthermore, if the validation loss did not decrease during

seven epochs, the training stopped. For fast computing, we ran the code using Keras [49], a deep learning

library in Python, on a computer with two GPUs.

5.3.4 Ablation Study

We conducted an ablation study to verify the e↵ectiveness of the proposed model. We experi-

mented with the following settings to investigate the model. The architectures of each model used in the

experiments are illustrated in Figure 5.2.

• The e↵ect of the auxiliary network: The proposed JDC network model was compared to

the main network only (without the auxiliary network). They are denoted by JDCS and Main,

respectively.
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• The e↵ect of the combined voice detection in calculating the loss function: The proposed

model used the sum of the outputs from both the main and auxiliary networks (Equation (5.3))

in calculating the voice loss function. This was compared to the case where only the output of

auxiliary network, ov, was used in calculating the loss function, which is denoted by JDCA.

• The e↵ect of the combined voice detection in predicting singing voice: The JDC network

can detect singing voice with three possibilities in the test phase: omv from the main network, ov

from the auxiliary network, and osv the sum of the two outputs. We compared the performance

of the three melody extraction outputs and evaluated them for each of the two loss functions

above. As a result, we had a total of six outputs, which are denoted by JDCS(omv), JDCS(ov),

JDCS(osv), JDCA(omv), JDCA(ov), and JDCA(osv).

To demonstrate the e↵ectiveness of the JDC network, we also examined the performances of the

model Main(AUX) and Main(SV D). In both models, the networks for pitch estimation and singing

voice detector (SVD) were trained separately. Both networks for melody extraction were identical to

Main, but only the labels corresponding to the pitches were used as the target labels. The architecture

of SVD for Main(AUX) was identical to the auxiliary network. Following [38], we implemented the

SVD for Main(SV D). For fair comparison, the same training datasets were used in all training phases.

m +

J D CA(ov)

OvOm

J D CS(omv)

Om

M a i n

Om Ov

2C

M a i n (AU X )

J D CA(osv)

Omv

Osv

Ov

Om

J D CS(ov) J D CS(osv)

Omv

Ov

Om Osv

OvOm

M a i n (S V D )
SVD

: meanm

J D CA(omv)

OvOm

: concat.C

: Bi-LSTM

: conv blocks

+ : addition

+
Omv

Ov

Om Osv

+
Omv

Ov

Om Osv

: training only

: test only

: training / test

Figure 5.2: Architectures of melody extraction used for performance comparison in this paper. In

the model name, the subscript refers to the type of JDC network, and parentheses refer to the source

of voice detection output. The black and red solid arrows indicate the paths used for training and

training/testing, respectively. The red dotted arrows indicate the path used for the test, although it was

not used for training.

The models and voice detection outputs on the four test datasets were evaluated for melody ex-

traction as mentioned in Section 5.3.1. We carried out five runs of training with di↵erent initializations

and analyzed the results across di↵erent metrics of melody extraction evaluation and di↵erent test sets,

34



respectively. To further validate the e↵ectiveness of the models, a t-test between the Main and each

JDC network to compute the statistical significance on the results (the results were normally distributed

(Shapiro–Wilk test: p ¿ 0.05)) of the five trials was performed.

In addition, we examined their singing voice detection capability using the Jamendo dataset, which

was dedicated to the voice detection task (there was no annotation on the pitch of the melody). Because

this was for the voice detection task, we report only VR and VFA. In addition to the models and voice

detection outputs in the ablation study, we also compared out best model to other state-of-the-art singing

voice detection algorithms [36,38,51].

5.4 Results and Discussion

5.4.1 Comparison of Melody Extraction Performance

Figure 5.3a shows the results of the five melody extraction evaluation metrics for the compared

models and outputs. In general, JDC networks were superior to Main in terms of OA, and among the

JDC networks, JDCS networks that used the sum of the two outputs in the loss function were more

accurate than JDCA that used only the output of the auxiliary network.

Both RPA and RCA increased significantly in all JDC networks, especially JDCS(ov) and JDCS(osv).

This is mainly attributed to the increase in VR. That is, the JDC networks detected the activity of

singing voice more responsively, having fewer missing errors. The average RPA and RCA of Main were

76.1% and 78.1%, respectively, while those of JDCS(ov) were 84.7% and 86.0%, respectively (p-value ¡

0.01). However, both VR and VFA were high due to their aggressiveness, and this led to degradation

in OA. On the other hand, JDCS(omv) predicted the voice activity more reliably by significantly reduc-

ing VFA. The average VFA of JDCS(osv) was 17.7%, but that of JDCS(omv) was 9.0%. As a result,

JDCS(omv) achieved the highest average OA (85.7%, p-value ¡ 0.01), outperforming the two networks.

This result indicates that the voice detection output of the main network was more conservative than

the output of the auxiliary network. This is true because the main network had more classes (i.e., pitch

labels) with which to compete. However, comparing JDCS(omv) to JDCA(omv), the main network in

JDCS(omv) became more sensitive to voice activity due to the influence of the auxiliary network. This

reveals that combining omv with ov in calculating the voice detection loss function (Equation (5.4)) con-

tributed to driving more tightly-coupled classification and detection, thereby improving the performance

of melody extraction.

The overall performance of Main(AUX) was generally higher than that of Main, but it did not

outperform JDCS(omv). The average OA ofMain(SV D) was comparable toMain, and the performance

was lower than that of Main(AUX). Experimental results also showed that the deviations of RPA and

RCA of the proposed models were high, except for Main(AUX) and Main(SV D). Since the proposed

models were trained for both pitch estimation and voice detection at di↵erent levels of abstraction, they

were sensitive to initialization.

Figure 5.3b shows the results of overall accuracy (OA) on the four test sets for the compared models

and outputs. The performance gap varied by up to 10% depending on the dataset, indicating that the

models were a↵ected by the characteristic that each test set had (e.g., genre). Again, we see that the

performances of the JDC networks were generally superior to that of Main for all test datasets.

Comparing JDCA to JDCS in each of the three cases (omv, ov, and osv), the average of OA for three

JDCA and JDCS networks were 83.5% and 84.9%, respectively. JDCS networks were generally superior

to JDCA networks. The average OA of JDCS(omv) was improved by 3.17% over that of Main. With
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(a) Melody extraction accuracy for di↵erent evaluation metrics

(b) Overall accuracy for di↵erent test datasets

Figure 5.3: Performance of melody extraction on the Main, Main(AUX), Main(SV D), and JDC

networks. The reported results were averaged across five training runs with di↵erent initializations. The

“average” was calculated as the average score of all songs in all datasets. The band inside the box is

the median, and the black triangle indicates the mean. RPA, raw pitch accuracy; RCA, raw chroma

accuracy; VR, voicing detection rate; VFA, voicing false alarm rate.

regard to OA, a t-test revealed a statistical significance between Main and JDCS(omv). The results

are as follows: ADC04 (0.025), MIREX05 (0.01), MedleyDB (0.027), and RWC (0.043). JDCS(omv)

increased the average OA with respect to Main for ADC04, which is an especially challenging dataset.

The average overall accuracy of JDCS(omv) is 83.7%, which was 6.1% higher than that of 77.6% of

Main.

To summarize, in the training phase, the most e↵ective models were JDCS networks that used

both the main and auxiliary outputs for voice detection in the loss function. In the inference stage, the

most e↵ective output was omv, which used only the output of the main network. As a result, the best

performance was obtained by JDCS(omv). The overall performances of Main(AUX) and Main(SV D)

were lower than the JDC networks. The JDC network had only 3.8 M parameters, while Main(AUX)

and Main(SV D) had 7.6 M and 5.3 M parameters, respectively. It also shows that the JDC network is

an e�cient architecture for melody extraction.

36



5.4.2 Comparison of Voice Detection Performance

Figure 5.4 shows the average performances of singing voice detection for the Main, Main(AUX),

JDCA, and JDCS networks evaluated on the four test sets. JDCS(Omv) achieved the best voice

detection performance, leading to improved melody extraction performance. The F1 score of Main was

91.0%, and that of JDCS(Omv) was 93.3% (p-value ¡ 0.05). F1 scores of other JDC networks were higher

than Main, but there were no significant di↵erences. For Main(AUX), Main(SV D), voice detection

performance was significantly lower (the F1 scores were 87.5% and 88.9%, respectively). This seems to

be due to the fact that the used training set had a higher percentage of voice segments than non-voice

segments. If enough data can be used for model training, there is a possibility that the performance of

SVD may be further improved.

Figure 5.4: Performance of singing voice detection for di↵erent evaluation metrics. “ACC” indicates

the overall accuracy of voice detection. “PR” and “F1” indicate precision and F1 score, respectively.

Figure 5.5 displays the performances of the proposed networks evaluated on the Jamendo dataset,

which is dedicated to singing voice detection and unseen in training the models. As observed in the

melody extraction results, the voice detection output of the main network was more conservative. This

led to a low VR and VFA. On the other hand, the JDC networks that had the separate singing voice

detector became more responsive, having higher VR and VFA. When comparing the two families of

JDC networks, JDCS was more conservative than JDCA as the voice loss function contained the voice

output from the main network. A similar result was found among the voice detection outputs. That

is, JDC with omv had lower VR and VFA than JDC with ov or osv. While the JDC networks returned

comparable results, the best performance in terms of accuracy was obtained by JDCS(osv). The average

of VR of JDCS(osv) was 18.3% higher than that of Main, maintaining a low VFA of 22.6%.

In Table 5.2, we compare the voice detection result with other state-of-the-art algorithms. Lee

et al. [72] reproduced each algorithm using the Jamendo dataset as the training data under the same

conditions, and we used the results for comparison. The performance of JDCS(osv) was lower; however,

considering that the compared models were in fact trained with the same Jamendo dataset (by using

di↵erent splits for training and testing), the result from our proposed model was highly encouraging,

showing that it generalized to some extent.
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Figure 5.5: Result of singing voice detection on Jamendo.

Table 5.2: Comparison of results of existing algorithms, Main(SV D), and JDCS(osv) (average accuracy

of 5 runs). Note that Jamendo is not included in the training set of Main(SV D) and JDCS(osv).

Accuracy VR Precision F1 Score

Lehner [51] 87.9 91.7 83.8 87.6

Schlüter [38] 86.8 89.1 83.7 86.3

Leglaives [36] 87.5 87.2 86.1 86.6

Main(SV D) 77.4 79.7 76.2 78.3

JDCS(osv) 80.0 80.2 79.1 79.2

5.4.3 Comparison with State-of-the-Art Methods for Melody Extraction

We compared our best melody extraction model, JDCS(omv), with state-of-the-art methods using

deep neural networks [20,22,28,62]. For a comparison of results under the same conditions, the test sets

were ADC04, MIREX05, and MedleyDB for comparing other methods as mentioned in Section 5.3.1.

Table 5.3 lists the melody extraction performance metrics on three test datasets. The best score in

each column is highlighted in bold. The pre-trained model and code of Bittner et al. [20] are publicly

available online, and the results in Table 5.3 were reproduced by [22] for vocal melody extraction. The

results show that the proposed method had high VR and low VFA, leading to high RPA and RCA, and

it outperformed the state-of-the-art methods. In addition, we confirmed that the proposed method had

stable performance over all datasets compared to other state-of-the-art methods. It also showed that

combining two tasks of melody extraction, i.e., pitch classification and singing voice detection, through

the proposed JDC network and loss function was helpful for performance improvement.

5.4.4 Case Study of Melody Extraction on MedleyDB

We evaluated the models with a tolerance of one semi-tone, following the standard melody extrac-

tion evaluation rule. However, we should note that our proposed model can predict the pitch with a

higher resolution (1/16 semi-tone). Figure 5.6a shows the spectrogram of an audio clip (top) and the

corresponding melodic pitch prediction along with the ground truth (bottom). Our proposed model can
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Table 5.3: Comparison of vocal melody extraction results.

(a) ADC04 (Vocal)

Method VR VFA RPA RCA OA

Bittner et al. [20] 92.9 50.5 77.1 78.8 70.8

Su [62] 90.1 41.3 74.7 75.7 72.4

Lu and Su [22] 73.8 3.0 71.7 74.8 74.9

Hsieh et al. [28] 91.1 19.2 84.7 86.2 83.7

Proposed 88.9 11.4 85.0 87.1 85.6

(b) MIREX05 (Vocal)

Method VR VFA RPA RCA OA

Bittner et al. 93.6 42.8 76.3 77.3 69.6

Su 95.1 41.1 83.1 83.5 74.4

Lu & Su. 87.3 7.9 82.2 82.9 85.8

Hsieh et al. 84.9 13.3 75.4 76.6 79.5

Proposed 90.9 2.4 87.0 87.5 90.7

(c) MedleyDB (Vocal)

Method VR VFA RPA RCA OA

Bittner et al. 88.4 48.7 72.0 74.8 66.2

Su 78.4 55.1 59.7 63.8 55.2

Lu & Su 77.9 22.4 68.3 70.0 70.0

Hsieh et al. 73.7 13.3 65.5 68.9 79.7

Proposed 80.4 15.6 74.8 78.2 80.5

(d) RWC

Method VR VFA RPA RCA OA

Proposed 92.4 5.4 85.4 86.2 90.0

track nearly continuous pitch curves, preserving natural singing styles such as pitch transition patterns

or vibrato.

While the proposed model achieved improved performance in singing melody extraction, the overall

accuracy was still below 90%. We found that errors occurred more frequently in particular cases. Fig-

ure 5.6b,c gives the examples of bad cases where VR and RPA were less than 60%. In both examples,

the failures were mainly attributed to voice detection errors.

In Figure 5.6b, the harmonic patterns of the vocal melody were not clearly distinguished from

background music because the vocal track was relatively softer than the accompanying music track.

This weak vocal volume was investigated as a cause of bad singing detection in [72]. Since our melody

extraction model was trained in a data-driven way, this could be addressed to some degree by augmenting

the training data, for example adjusting the mixing of vocal gains (if they are in separate tracks).

In Figure 5.6c, a strong reverberation e↵ect was imposed on the singing voice; thus, the harmonic

patterns of the singing voice appeared even after the voice became silent. The algorithm then detected
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the reverberated tone as vocals and predicted the pitch from it. This case is somewhat controver-

sial because this could be seen as a problem of the ground truth notation. When we excluded these

types of heavily-processed audio clips in MedleyDB (“PortStWillow-StayEven” and “MatthewEntwistle-

Lontano”), we observed a significant increase in performance (about 5% in OA on MedleyDB).

5.5 Conclusions

We presented a joint detection and classification (JDC) network that performs singing voice detection

and pitch estimation simultaneously. The main network uses a CRNN architecture that consists of

convolutional layers with residual connections and Bi-LSTM layers. The main network is trained to

classify the input spectrogram into pitch labels quantized with a high resolution or a special non-voice

label. The auxiliary network is trained to detect the singing voice using only multi-level features shared

with the main network. We also examined the joint melody loss function that optimizes the JDC network

to combine more tightly the tasks and the three di↵erent voice detection outputs from the two networks.

Through the experiment, we provided a better understanding of how the main network and auxiliary

network work for voice detection. We also showed that the knowledge sharing between two networks

helps perform the melody extraction task more e↵ectively. We showed that the proposed JDC network

has consistently high performance for all test datasets and outperforms previous state-of-the-art methods

based on deep neural networks. Finally, we illustrated failure cases, which may provide ideas for future

work to improve the melody extraction performance further.
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(a) Good example

(b) Bad Example #1

(c) Bad Example #2

Figure 5.6: Case examples of singing melody extraction from the MedleyDB dataset: (a) good example

(“MusicDelta-Gospel”) and (b,c) bad examples (“CelestialShore-DieForUs”, and “MatthewEntwistle-

Lontano”).

41



Chapter 6. Semi-Supervised Learning Using Teacher-Student

Models for Vocal Melody Extraction

6.1 Introduction

One of the key elements in the success of deep learning is a large amount of labeled data. However,

when the labeled data is scarce in a given task, it can be a bottleneck in leveraging the power of deep

neural networks. The issue has been found in many music information retrieval (MIR) tasks as well.

Among others, melody extraction research has su↵ered from it as pitch labeling requires experienced

annotators to handle the annotation tool and the process is extremely labor-intensive [73].

The lack of labeled data in melody extraction research has been tackled in several di↵erent ways.

A popular method to alleviate the issue is data augmentation which increases labeled data by trans-

forming the input audio, for example, using pitch-shifting [16, 22, 27]. Data augmentation, however,

has the limitation in covering the diversity in the input space. Another approach is using multi-track

audio data [34, 35, 74]. This allows to use monophonic pitch tracking algorithms for the melodic source

and therefore it expedites laborious the pitch labeling. However, multi-track recording datasets often

maintain individual tracks as stem files where multiple similar sound sources can be mixed (e.g., main

vocal and backing vocal). Therefore, obtaining clean pitch labels from multi-track audio can be not

straightforward [20, 75]. Recently, melody MIDI files, which are more easily accessible, have been uti-

lized to guide melody extraction from audio with transfer learning techniques from the symbolic to audio

domain [22,24]. MIDI data exhibit greater flexibility than audio on data augmentation, but still face lim-

itations on representing natural pitch contours of singing voice, which usually contain subtle variations

such as vibrato and portamento.

Semi-supervised learning (SSL) is another but more general strategy to address the lack of labeled

data. SSL uses a large amount of unlabeled data, which is usually easy to collect, jointly with labeled data.

A popular class of SSL methods is based on self-training in the teacher-student framework. Recent works

have combined random data augmentation with the SSL methods to encourage the model to produce

robust output even when input is perturbed. This approach has achieved state-of-the-art performance

on image classification [76–78], speech recognition [79], and audio classification [80]. There are a few

MIR researches that used the teacher-student framework to address the lack of labeled data, for example,

in automatic drum transcription [81] and singing voice detection [82, 83]. However, to the best of our

knowledge, recent advances in SSL methods that leverage the power of deep neural networks and random

data augmentation in the teacher-student framework have been not studied yet in the music domain.

In this paper, we apply the SSL methods to vocal melody extraction with the following contributions.

First, we present the SSL methods for vocal melody extraction leveraging large-scale unlabeled music

datasets. This prevents the model from overfitting to small labeled data and improve the performance.

Second, we compare three setups of teacher-student models along with various audio data augmentation

techniques. We show the model with the consistency regularization is most e↵ective. Third, we investi-

gate e↵ective SSL strategies by exploring joint training, the size of unlabeled data, and the number of

self-training iterations. Fourth, we show that the proposed teacher-student training method enables a

baseline convolutional recurrent neural network model to achieve performance comparable to state-of-

the-arts. Finally, apart from the SSL method, we propose large-scale testing data artificially generated
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from unlabeled data using an analysis-synthesis framework, considering the lack of labeled data even at

the testing stage. Evaluation on the diverse and sizable test set will reinforce the e↵ectiveness of the

proposed method. For reproducibility, the source code and pre-trained model used in this paper are

available at https://github.com/keums/melodyExtraction_SSL.

6.2 Related work

The teacher-student framework has been previously studied in several MIR tasks to address the lack

of labeled data. Wu and Lerch applied the approach to automatic drum transcription [81]. They used

multiple teacher models based on non-negative matrix factorization (NMF) trained with di↵erent datasets

and a student model based on deep neural network trained with labels from the teachers. They showed

that the student model outperforms the teacher models. However, it was not a self-training setting where

the teacher model is repeatedly replaced with an improved student model. Schlüter explored the self-

training for singing voice detection [82]. They first trained a convolutional neural network (CNN) on the

original labels with low-granularity, then a second network on pseudo-labels with high-granularity from

the first network, and a third network on the summarized saliency maps from the second network. They

showed this self-improvement worked up to the third network. However, they conducted the self-training

on weakly-labeled data in the context of multiple-instance learning and did not used any unlabeled data.

Recently, Meseguer-Brocal et al. used the teacher-student paradigm for singing voice detection to create

a large-scale time-aligned vocal melody and lyrics dataset [83]. They consistently improved the teacher

model by increasing the correlation between the prediction of the model and the time-aligned lyrics

annotation.

6.3 Methods
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Figure 6.1: Diagram of the three Teacher-Student models.

6.3.1 Model Architecture

Recent melody extraction algorithms have used CNN [20, 26, 62] and its variants [23, 25, 27] as a

standard architecture. Since we focus on the e↵ectiveness of SSL in this paper, we employ a previously

proposed convolutional recurrent neural network (CRNN) which was a baseline architecture in [27].
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Algorithm 1: Train Teacher-Student Models in SSL

Train a teacher network T1 on labeled data D = {(xd, yd) : d 2 (1, ..., N)};
Generate augmented data Ũ = {x̃u = RAA(xu) : u 2 (1, ...,M)} from unlabeled data

U = {xu : u 2 (1, ...,M)};
for i = 1 to k do

Use Ti to generate pseudo labels for U (or Ũ);
Train student network Si using both D and U (or Ũ) as training data;

Ti+1 = Si;

end

The CRNN architecture consists of 4 ResNet blocks and a bi-directional long short-term memory layer.

We first merge the audio waveforms into a mono channel and downsample them to 8 kHz. We then

calculate the logarithmic-magnitude spectrogram using short-time Fourier transform with a 1024-point

Hann window and an 80-point hop size.The CRNN architecture takes 31 consecutive frames of the

spectrogram as input and predicts a pitch label quantized with a resolution of 1/8 semitone and ranged

from E2 (82.4 Hz) to B6 (1975.7 Hz). The size of the output layer is 442, including a non-vocal label.

6.3.2 SSL in the Teacher-Student Framework

Our SSL method is based on self-training in the teacher-student framework where the teacher model

is first trained with labeled data and then the student model is trained with artificial labels generated

from the teacher model using unlabeled data. The artificial labels can be the prediction distribution

vector [76, 77] or one-hot vector determined by the class with a highest confidence [78, 84]. We formally

describe the overall procedure in Algorithm 1. We first train the initial teacher model T1 using only

labeled data D where xd are labeled examples and yd are one-hot reference labels. For unlabeled data U
where xu are unlabeled examples, we use random data augmentation to generate noisy input data Ũ
where x̃u are noisy unlabeled examples. RandAudioAugment (RAA) is an audio version of random data

augmentation method which is described in Section 6.3.4. While it is more e↵ective to use random data

augmentation on the student model only in image classification [77], we also try applying it for both

teacher and student models for ablation study. Once we train the student model jointly with the labeled

data and unlabeled data (with pseudo labels), we replace the teacher model with the student model. We

repeat the same pseudo labeling and the training with a new student model.

6.3.3 Proposed Teacher-Student Models

Our proposed TS models are illustrated in Figure 6.1. The supervised loss LD is computed with

labeled data and defined as:

LD =
1

N

NX

d=1

H(yd, p(y|xd; ✓s)) (6.1)

where H(·) denotes the cross-entropy between the pitch label yd and pitch prediction p(y|x), and ✓s

denotes a set of parameters of the student model. The supervised loss is a common loss term of the three

investigated TS models. Each of them are explained below.

• Basic Teacher-Student is a fundamental teacher-student framework that uses the unlabeled data

U but trains the student network with the pseudo labels generated from the teacher network. The
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final loss of Basic Teacher-Student LB is defined as

LB = LD +
1

M

MX

u=1

H(yu, p(y|xu; ✓s)) (6.2)

where yu is the pseudo labels on U generated by the teacher network, i.e. yu = p(y|xu; ✓t) where

✓t to denote the parameters of teacher network. The basic teacher-student model is illustrated

in Figure 6.1(a).

• Noisy Teacher-Student takes noisy unlabeled data Ũ for both of the teacher and student net-

works using RAA and the rest is the same as the basic teacher-student model. The final loss of

Noisy Teacher-Student LN is defined as

LN = LD +
1

M

MX

u=1

H(ỹu, p(y|x̃u; ✓s)) (6.3)

where ỹu is a prediction on Ũ generated by the teacher network, i.e. ỹu = p(y|x̃u; ✓t). The noisy

teacher-student model is illustrated in Figure 6.1(b).

• Noisy Student takes noisy unlabeled data Ũ only for the student network while the teacher

network takes unnoised input U to generate the pseudo labels. The idea is that the student should

produce consistent outputs that minimize the di↵erence from the teacher even though the input is

perturbed [77]. This notion is also similar to consistency regularization [85, 86]. The final loss of

Noisy Student LC is defined as

LC = LD +
1

M

MX

u=1

H(yu, p(y|x̃u; ✓s)) (6.4)

The noisy student model is illustrated in Figure 6.1(c).

6.3.4 Data Augmentation

We conducted pitch-shift by ± 1,2 semitone on the labeled data D (audio and corresponding la-

bels). In the melody extraction task, it has shown that pitch-shifting can improve the generality and

performance of the model by increasing the amount of audio and label pairs for di↵erent f0 [16, 87].

For data augmentation of unlabeled data U , we propose RandAudioAugment (RAA) inspired by Ran-

dAugment [88], which is a method of randomly applying di↵erent kinds of transformations to increase

image data. RAA converts audio by randomly selecting multiple audio e↵ects as follows: audio equalizer

(low-shelf, high-shelf), filters (low-pass, high-pass), overdrive, phaser, and reverb. Here, we use pysndfx

that is a Python library designed for applying e↵ects to audio files 1. We sampled a random magnitude

of each transformation from a pre-defined range. The implementation details for RAA are also described

in the source code.

6.3.5 Data Selection

The SSL algorithm using large-scale unlabeled data may su↵er from labeling noise. Unlabeled data

are highly likely to have audio without vocals. Filtering only high-confidence examples or the top-K

examples in image classification has demonstrated to be an e↵ective method to handle the labeling

1https://github.com/carlthome/python-audio-e↵ects
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noise [77, 89]. Likewise, we performed data selection so that only the tracks with vocal ratios exceeding

a threshold were used for training. To estimate the ratio of vocals included in the track, we used our

singing voice detector2 based on CNN based on [38]. Considering the distribution of vocal ratio in the

FMA, we set the threshold to 0.3.

6.4 Datasets

Dataset Number of Tracks Total Length

Training

(Labeled)

RWC 100 6h 47m

MedleyDB 61 2h 39m

iKala 262 2h 6m

Training

(Unlabeled)

In-house 535 6h 21m

FMA small 3,521 / 8,000 25 / 60h

FMA medium 10,639 / 25,000 89h / 208h

FMA large 40,505 / 106,574 337h / 888h

Test

ADC04 12 4m

MIREX05 9 4m

MedleyDB 12 43m

AST218 218 14h 53m

Table 6.1: Description of datasets. In FMA, The former and the latter are the total of the tracks with

the vocal ratio above 0.3 and the total of the entire tracks respectively.

Table 6.1 shows the simple statistics of the labeled and unlabeled training datasets and test datasets.

6.4.1 Labeled Data

We used the three labeled datasets (RWC [44], MedleyDB [34], and iKala [35]) and split them into

a train and validation set following [20]. We augmented the training data by pitch-shifting with ±
1,2 semitone. The total length of the labeled training data amounts to about 55 hours after the data

augmentation.

6.4.2 Unlabeled Data

As to unlabeled data, we used an in-house dataset crawled from YouTube and the Free Music Archive

(FMA) [90]. The in-house dataset is pop songs with vocals recorded in a variety of environments. It

includes both public-released and user-uploaded tracks. FMA is a large-scale open dataset containing

up to 106,574 tracks and covers 161 genres of music. We used FMA for performance comparison on

data scalability. The FMA has three di↵erent subsets depending on the number of the track and genre

included: FMA small (FMAS), FMA medium (FMAM ), and FMA large (FMAL). We selected vocal

tracks from them as described in Section 6.3.5 and denote the selected versions as FMASv, FMAMv,

and FMALv, respectively. We augmented the unlabeled datasets via RAA during training as described

in Section 6.3.4.
2https://github.com/keums/SingingVoiceDetection
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6.4.3 Test Data

Public Test Sets

We used three public test sets (ADC04, MIREX053, and MedleyDB) to evaluate the performance of

vocal melody extraction. In this study, we excluded non-vocal tracks from ADC04 and MIREX05, and

used songs not included in training data for MedleyDB. To obtain the ground truth for singing voice in

MedleyDB, we adopted its ’MELODY2’ annotations. These three datasets have been commonly used to

compare the performance of melody extraction. However, the number of tracks and the total length are

very limited as shown in Table 6.1.

Proposed Large-Scale Test Set

To make up the scarcity of testing data for evaluating singing voice extraction algorithms, we

propose a new test set composed of DSD100 [91] and MusDB18 [92]. The two multitrack datasets were

originally designed for source separation. Each track has four isolated stems: vocals, drums, bass, and

others. Following the analysis/synthesis framework [75], the singing melodies for 218 selected tracks4

were synthesized with automatically generated f0 contours. In detail, for each song, we extracted the

melody of the vocals with five di↵erent pitch trackers, and each f0 information along with the vocal audio

was fed into the WORLD [93] (D4C edition [94]) vocoder to reproduce five monophonic variations of the

vocal stem. The original vocal audio was parameterized into harmonic and aperiodic spectral envelopes,

and then resynthesized with provided pitch contours. Then a mask was applied to filter intervals without

f0 information. For remixing, the amplitude of the synthesized vocal was weighted to that of the original

vocal stem, and the rest stems were directly summed up as accompaniments, then mixed with the

weighted synthesized vocal that perfectly matched the f0 annotation. These 1,090 polyphonic mixtures

with accurate and automatic annotations constitute the proposed analysis/synthesis test set, AST2185.

Each track in AST218 has five variations whose vocal melody was annotated separately with five

di↵erent pitch estimators: CREPE [58] (with confidence threshold of 0.5 and 0.7), pYIN [95], and

Lu&Su [22] (with time step of 10 and 20ms), as they have di↵erent merits. Since there is no exact way

to pinpoint a common optimal confidence threshold across the entire dataset, we chose two di↵erent

threshold values for CREPE: one is 0.5, su↵ering from high false positive (FP) but preserving details;

the other threshold is 0.7, acceptable FP though sacrificing some recall. pYIN was chosen for it has

even lower FP while producing stable and continuous melodic lines when the vocal stem is monophonic.

However, it is not stable in the pholyphonic scenario, which is universal in DSD100 and MusDB18. In

need of other polyphonic-based melody estimators to balance the f0 quality, we chose two time step

setups of the Lu&Su model: 20ms, at which this model is optimized; and 10ms, which provides more

continuous predictions and o↵ers alternative pitch contours when encountering multiple melodic vocal

lines.

The analysis/synthesis framework has been practiced successfully in evaluating monotonic pitch

trackers [58]. As a sanity check, we evaluated several patchCNN [62] setups on the original and resynthe-

sized ADC04, MIREX05, and MedleyDB. The di↵erences of OA are within ± 2–5%, which is acceptable,

meaning this framework is also applicable for polyphonic test set generation.

3http://labrosa.ee.columbia.edu/projects/melody/
4Songs that appear in MedleyDB were excluded for they were part of the training data, but songs in MusDB18 having

counterparts in DSD100 were not removed for they are not exactly identical. Additionally, 12 songs that do not have

discernible vocal melodies were also excluded.
5https://sites.google.com/view/mctl/resource
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When evaluating vocal extraction algorithms on AST218, we averaged the scores from the five

variations. Our pilot study shows that these five pitch contours reach consensus over a majority of

frames, while the estimations di↵er for tricky frames. Rather than manually check on the estimated f0,

we used AST218 in an ensemble manner, fully leveraging the spirit of automatic pitch annotation.

6.5 Experiments

6.5.1 Experimental Setup

Training Details

We used the CRNN architecture with residual connections and bi-directional long short-term mem-

ory in all experiments. The implementation of the model was consistent with that of the main network

of [27]. We trained our models using Adam optimizer for 70 epochs on 2 GPUs. The initial learning rate

was set to 0.003 in all the experiments. We used a learning rate schedule that reduces the learning rate

by 0.7 times if validation accuracy did not increase within three epochs. The model and the training

procedures were implemented using Keras6 [49].

Evaluation

To evaluate the performance of melody extraction, we mainly used overall accuracy (OA) which

combines the accuracy of pitch estimation with voice detection. We also used three metrics raw pitch

accuracy (RPA) for pitch estimation, and voicing recall (VR) and voicing false alarm (VFA) for voice

detection [6]. These metric are computed by mir eval [47] library designed. This metric is computed

by the mir eval [47] library designed for evaluation in MIR tasks with pitch tolerance of 50 cents. We

converted the pitch label quantized in 12.5 cents (1/8 semitones) to frequency scales (Hz) and compared

them to the ground truth.

6.5.2 Experiment 1: Teacher-Student Models

Figure 6.2: Comparison with supervised-learning model and three student models on three test sets.

6We used Keras 2.3.0, Accessed: 15 May 2020
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Our first experiment is to demonstrate the e�cacy of the proposed Teacher-Student models for

SSL. In this experiment, we trained three Teacher-Student models described in Section 6.3.3 using an

in-house dataset as unlabeled data. We evaluated the performance of each model on ADC04, MIERX05,

and MedleyDB, which have been used as standard test sets for evaluation. As shown in Figure 6.2, the

basic teacher-student model can achieve 1.1% higher average OA than the supervised-only model which

has 77.7% average OA. This confirms the possibility of using unlabeled data to improve the performance

of melody extraction. Our experiment also shows that the noisy student model outperforms all the

others, having 78.9% average OA.

The noisy student model increases OA by 3.1% with respect to the supervised-only model in Med-

leyDB, which is especially a challenging dataset because it contains tracks that are di�cult to distinguish

between vocals and background music, or tracks with excessive audio e↵ects. The results indicate that

the student network can be trained reliably using the noisy student model, even if the initial teacher

network is not robust to diverse noise. Meanwhile, the performance of the noisy teacher-student has

deteriorated, being worse than the supervised-only model. This degradation is probably because the

noised teacher model is not generating reliable pseudo labels.

6.5.3 Experiment 2: Joint Training vs. Fine-Tuning

Figure 6.3: Comparison with pre-training, fine-tuning, and joint training methods on three test sets.

The training methods of the teacher-student framework can be divided into three approaches de-

pending on how D and U are used for training: pre-training on only U and then fine-tuning on D;

joint-training on both U and D simultaneously. Figure 6.3 compares the results among pre-training,

fine-tuning, and joint training for the noisy student model. The jointly trained model achieves 0.8%

higher average OA than the fine-tuned model, with the highest results on MedleyDB. This indicates that

joint training on unlabeled data and labeled data would help the networks produce a decision boundary

that better reflects real music [96]. Interestingly, the average OA of the pre-trained model only on unla-

beled data is higher than that of the supervised learning model. This suggests that the distribution of

unlabeled data is similar to that of labeled data. Considering that the in-house dataset consists of pop

songs with vocals, the in-house dataset can be seen as having a similar tendency to the labeled data. It

provides insight into the data selection in the next experiment.
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6.5.4 Experiment 3: Size of Training Data

Figure 6.4: Comparison with Noisy Students on varied sizes of unlabeled datasets. The subscript ‘v’

denotes a selected subset of FMA whose vocal ratio exceeds a threshold. We use the average of OA for

ADC04, MIREX05, and MedleyDB to compare performances.

We investigated the importance of the size and validity of unlabeled data. To explore the e↵ect of

the size of unlabeled data, we started with the in-house dataset as training data for the noisy student

model and progressively included larger subsets of FMA. The results can be seen in Figure 6.4. Although

the FMA data set contains more numerous tracks than the in-house dataset, the average OA of FMAS

and FMAL is lower than that of the model trained only with the in-house dataset. Note that the

proposed model focuses only on vocal melodies. As a result, teacher models may su↵er from labeling

noise generated by numerous instrument tracks included in the FMA. In addition, all labels on the

instrumental track are classified as non-vocal pitch, resulting in data imbalance.

To confirm the validity of the dataset, we performed data selection for each FMA subset as mentioned

in Section 6.3.5 and used them to train each student model. Interestingly, as the size of the U increases,

the performance of each model tends to be significantly improved. For example, FMALv achieves an

average OA of 80.2%, which is 3.6% higher than the supervised-only model. This indicates that e↵ective

SSL requires a large amount of U with a similar distribution for D.

6.5.5 Experiment 4: Iterative Training

We iterated the self-training 4 times for the noisy student model using the in-house dataset and

FMALv. The results are illustrated in Figure 6.5. We observe that the performance continuously increases

up to 2 iterations achieving the highest average OA of 81.1%. Generally, self-training tends to amplify

the error caused by labelling noise during training. However, the noisy student model trained on large-

scale unlabeled data can help overcome this di�culty. Nevertheless, increasing the number of training

iterations three or more times does not improve performance, and rather slightly lower the accuracy.

6.5.6 Comparison with State-of-the-Arts

We compared the supervised-only model (as a baseline) and proposed the noisy student model

(NS) with four recent melody extraction algorithms based on deep neural networks: the patch-based
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Figure 6.5: E↵ect of iteration training for Noisy Students.

Methods ADC04 MIREX05 MedleyDB AST218

PatchCNN [62] 76.9 / 72.9 69.7 / 73.8 44.0 / 59.3 42.3 / 59.7

DSM [20] 89.2 / 72.2 87.7 / 80.1 80.6 / 75.4 38.9 / 68.3

SegNet [23] 88.7 / 83.3 82.6 / 80.0 70.6 / 75.5 41.5 / 68.1

JDC [27] 90.6 / 83.5 91.4 / 87.4 72.7 / 78.1 55.8 / 75.4

Baseline 78.7 / 76.8 79.9 / 81.5 57.2 / 70.7 56.3 / 69.7

Proposed (NS) 90.4 / 82.2 90.4 / 85.9 76.3 / 79.2 54.2 / 74.2

Table 6.2: Vocal melody extraction results in terms of (RPA / OA) of the proposed and other methods

on various test sets. The proposed model is iterated the self-training two times using the in-house dataset

and FMALv.

CNN (patchCNN) [62], the deep salience map (DSM) [20], the streamlined encoder/decoder network

(segNet) [23], and the joint detection and classification model (JDC) [27], which have open-sourced

codes with vocal mode. Each method was run with its default parameters, and then evaluated on the

three conventional test sets and the newly introduced AST218. Besides, we report the frame-level scores

instead of song-level ones to settle uneven song lengths.

Table 6.2 and Table 6.3 list the evaluation results of each method on the four test sets. In general,

performances of the proposed NS model are comparable to other supervised-learning-based methods and

even outperforms others in MedleyDB, and it e↵ectively improves the OA of the baseline by 4.5–8.5%.

The overall rankings of VR and VFA vary across the test sets, but the behavior converges in terms of

OA. One can also observe that the AST218 is the most challenging in the majority of cases. In such

a challenging dataset, the performances of the NS model shows that the proposed method is robust

to large-scale evaluation. However, the NS model improves the baseline except for VR and RPA in

AST218. This result might be because the simple rule-based remixing of vocal and accompaniment

tracks in AST218 is di↵erent from the artistic practice of mixing engineers, which can a↵ect voicing

detection and, in turn, RPA.

51



Methods ADC04 MIREX05 MedleyDB AST218

PatchCNN 91.8 / 46.1 80.3 / 11.6 60.1 / 22.4 61.6 / 26.0

DSM 95.7 / 61.1 93.9 / 29.4 85.4 / 26.6 44.6 / 7.7

SegNet 95.2 / 38.5 92.2 / 24.0 78.8 / 21.7 51.7 / 10.0

JDC 96.7 / 40.2 97.5 / 18.5 80.5 / 18.3 64.7 / 8.6

Baseline 92.6 / 33.8 89.1 / 15.2 71.0 / 16.7 72.0 / 19.2

Proposed (NS) 97.4 / 42.1 97.3 / 20.4 83.3 / 19.1 61.6 / 9.4

Table 6.3: Voicing detection results in terms of (VR / VFA) of the proposed and other methods on

various test sets.

6.6 Conclusion

This study provides a framework of semi-supervised learning using the teacher-student model for

vocal melody extraction. We compared three setups of teacher-student models and revealed that the

noisy student model is the most e↵ective and robust to real-world music where various noises can be

present. We showed that large-scale unlabeled data is e↵ective when they are properly selected. We found

that iterative training for the teacher-student model helps improve performance. We also confirmed the

e↵ectiveness of the proposed method by evaluating it on artificial large-scale test data generated from

automatically annotated multitrack data. Although these findings are based only on vocal melody

extraction, we believe our method can be extended to other MIR tasks that su↵er from the lack of

labeled data such as automatic music transcription and chord recognition.

52



Chapter 7. Semi-Supervised Learning Using Teacher-Student

Models for Singing Voice Activity Detection

7.1 Introduction

Singing Voice Activity Detection (SVAD) is to identify a singing voice among multiple tracks and

determine where a singing voice is included in a particular time frame. Identifying the singing voice

is the most fundamental step in music analysis because it is a crucial role in delivering melody, lyrics,

and emotions [8]. Modern music services require advanced solutions for searching for songs or evaluating

musical characteristics such as singer identification, song voice separation, and melody transcription [97].

SVAD can be used as a basic pre-processing step for these applications.

Early works for SVAD are mainly based on vibrato or formant modulation patterns that distinguish

it from other musical instruments [43,51,98]. In recent years, SVAD systems have a recent trend toward a

data-driven approach using deep neural networks [36,38,82,99]. Although the proposed algorithms show

high performance, they still struggle to solve repetitive and common errors caused by pitch-fluctuating

instruments [72]. Identifying a singing voice requires a much wider context than estimating pitch from

voice segments. That is, the voice/non-voice discrimination is a higher-level task than the pitch clas-

sification. It is more di�cult to distinguish the singing voice in mixed audio because instruments play

harmoniously related notes with the singing voice. Furthermore, complex vocal characteristics such as

unstable vocalization and complex harmonics make it hard to identify a singing voice from mixture audio.

Various model structures and methods have been proposed, but the reason the above problems still have

not been solved may be due to the lack of labeled data for training.

The scarcity of data continues to be mentioned as one of the major hurdles to be solved in the

field of MIR [34, 73], however collecting and labeling music data requires a daunting task. One of the

general methods for utilizing large-scale unlabeled data is semi-supervised learning (SSL) based on self-

training in the teacher-student framework. Our previous study for this framework for vocal melody

extraction [100] showed that that large-scale unlabeled data is e↵ective when they are properly selected.

With these findings, we believe that our method can be extended to the task of singing voice detection.

In this paper, based on the method as mention in Chapter 6, we apply the SSL methods to SVAD

with the following contributions. First, we reveal that our proposed SSL method also can be e↵ective for

other MIR tasks that su↵er from the lack of labeled data by applying it to SVAD. Second, we explore a

hard negative sampling technique as a kind of data selection and show that it helps to improve overall

performance while reducing false-positive errors. Finally, we show that our proposed model outperforms

other state-of-the-arts.

7.2 Related Work

7.2.1 Singing Voice Activity Detection

In the early method for singing voice detection, a diverse set of various features are used such as

MFCC, LPC, Perceptually derived LPC, zero-crossing rate, sharpness, harmonic coe�cient, and pitch

fluctuation. With these various features as inputs, classifiers based on SVM, HMM, and GMM were
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utilized to detect singing voice [45, 101, 102]. Unfortunately, these input features have the disadvantage

of being very heuristic and expensive. Lehner et al. [98] proposed a simple method with optimized MFCC

according to the length of the observation window, and achieve a comparable result to state-of-the-arts.

Lehner et al. [43] also proposed Fluctogram, a new feature that reflects a representation of characteristic

pitch fluctuations to reduce frequently occurring false-positive errors.

Various deep learning strategies proposed for di↵erent tasks have also been applied for an e↵ective

model for SVAD. Schlüter and Grill [38] proposed a CNN architecture inspired by an image recognition

task. The network is trained with 115 frame mel-spectrogram excerpts paired with labels indicating the

presence of a singing voice in the center frame. It is designed to take context into account using a wider

window. In particular, various data augmentation technologies were explored to find the most e↵ective

strategy. To address the sound level invariance, Schlüter and Lehner [103] also proposed a zero-mean

convolution that parameterized the filter of the first convolutional layer to zero-average. It is e↵ective to

stabilize the prediction of changes in the input gain and improve training on di↵erent volumes of data.

These methods achieved high performance but had the disadvantage that it was di�cult to perform

frame-level classification and temporal smoothing simultaneously. The recurrent network allows the

model to learn the inherent sequential aspect of the singing voice. RNN architectures [36,51] and CRNN

architectures [99] are proposed to make it easier for the model to take on temporal characteristics.

7.2.2 Semi-Supervised Learning

It is an extremely laborious task to collect a large amount of data and labels. To alleviate the need

for labels, semi-supervised learning (SSL) is used as one of the strategies for leveraging a large amount

of unlabeled data. The recent works in SSL using the teacher-student model have achieved state-of-

the-art performance on image classification [76–78, 86, 89]. In addition, data augmentation techniques

(CTAugment [78, 104] and RandAugment [77, 86]) are combined with the teacher-student framework to

improve the robustness of the student model by producing robust output even when input is added noise

or transformed.

Recently, recent advances in SSL methods used in the field of image classification has been little

studied in the MIR domain. However, it was recently applied to melody extraction and showed the

potentiality of application in the music field. Kum et al. [100] present SSL methods for vocal melody

extraction leveraging large-scale unlabeled music datasets with three teacher-student models. It shows

the e↵ectiveness of SSL strategies with consistency regularization and random audio augmentation. They

also investigated e↵ective SSL strategies by exploring joint training, the size of unlabeled data, and the

number of self-training iterations. In this study, we use the teacher-student framework of Noisy Student

proposed in [100] to train singing voice detection model using a large amount of unlabeled data with

random audio augmentation.

7.2.3 Hard Negative Sampling

Imbalance data often causes the model to learn to ignore certain classes of errors. One intuitive

solution is to consider the imbalanced distribution of the data. We can sample the data into a balanced

distribution by oversampling the minority class data and downsampling the majority class data. The

most common method is considering a balance between positive examples and negative examples. Easy

negative samples may not contribute to better training even if the number increase. However, hard-

negative samples could provide more information to discriminate each class. By controlling the ratio of
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hard examples rather than a number of easy examples that can be easily identified, it can make a more

robust classifier can be made [105,106]. In particular, hard negative sampling (or hard negative mining)

is mainly proposed as a method to reduce false-positive errors. Rather than randomly selecting negative

examples, it is common to use negative examples with the highest confidence score in the training set

together with positive examples randomly selected for learning [107,107,108].

7.3 Methods

7.3.1 Model Architecture
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Figure 7.1: Overview of the proposed architecture for singing voice detection

The diagram of the architecture is shown in Figure 7.1. This structure was inspired by the auxiliary

network for singing voice detection of the JDC network [27]. The architecture wad configured with

4 ConvBlock with residual connection and a bi-directional long short-term memory (Bi-LSTM) layer.

ConvBlock is organized in the order of two ‘3 ◊ 3 convolutional layer - batch normalization layer - leaky

rectified linear’, and followed by a 1 ◊ 2 max-pooling layer that preserved the input size in the time axis.

The number of channels in the convBlocks gradually increases as 64, 128, 128, and up to 256. We used a

concatenated multi-level features stemmed from each convBlock to observe diverse textures in di↵erent

levels of abstraction. We used a Bi-LSTM layer to predict probabilities of the presence of the singing

voice in a sequence-to-sequence manner from concatenated features via the softmax function. We use

the binary cross-entropy between the prediction and the ground truth as a loss function.

The SVAD takes 75 frames of mel-spectrogram as input to capture contextual information over a

long time. We resampled audio signals to 16kHz and merged stereo channels to mono. We extracted

mel-spectrogram with 80 triangular filters between 0 and 8 kHz, a frame length of 1024, hop size of 160

samples. We compressed the magnitude by a log scale.

7.3.2 Teacher-Student Model

In this experiment, we used Noisy Student as teacher-student framework proposed by [100] for

leveraging unlabeled large datasets. The diagram of the Noisy Student is shown in Figure 7.2. The noisy
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Figure 7.2: Diagram of the Noisy Student of Teacher-Student framework for singing voice detection

unlabeled data is used as input to the student network to be trained. On the other hand, the original

data is used as input to a pre-trained teacher network to generate pseudo labels. The loss of Noisy

Student LC is defined as

LC =
1

N

NX

d=1

H(yd, p(y|xd; ✓s)) +
1

M

MX

u=1

H(yu, p(y|x̃u; ✓s)) (7.1)

where H(·) denotes the cross-entropy. yd and yu are ground-truth on labeled data and pseudo labels on

unlabeled data, respectively. x̃u is sample of noisy unlabeled data. p(y|x; ✓s) denotes pitch prediction of

student model whose set of parameters is ✓s.

7.3.3 Hard Negative Sampling

Some Instrument such as violin, saxophone, trumpet, and electric guitar have similar characteristics

to singing voices, considering the pitch range, harmonic structure, and temporal dynamics (vibrato),

and they often cause confusion in detecting singing voice. In this study, as described in the Section 7.4,

we selected hard negative samples from an in-house dataset that played melodies only with musical

instruments, and all tracks are annotated as ‘0’ (unvoiced). First, we trained a teacher network (HNS)

using hard negative samples and unvoiced labels along with existing labeled data. Then we trained the

student network (HNS+SSL) with all the unlabeled data using the Noisy Student setup as mentioned in

Section 7.3.2.

7.4 Data sets

7.4.1 Training data

We used the four labeled datasets (Jamendo [45], RWC [44], MedleyDB [34], and iKala [35]). We

divided them into training and validation set to tune the network parameters following [100]. We also

augmented labeled data sets by applying the pitch-shifting by ±1, 2 semitones. Pitch shifting has proven

to be an e↵ective method to increase data and improve results for singing voice activity detection [38].

As to unlabeled data, we used Free Music Archive (FMA) [90]. FMA is a large-scale open dataset

containing up to 106,574 tracks and covers 161 genres of music. We used FMA for performance compar-

ison on data scalability. The FMA has three di↵erent subsets depending on the number of the track and
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Dataset # of songs Total length

Training

(Labeled)

RWC 100 6h 47m

MDB 61 2h 39m

iKala 262 2h 6m

Jamendo 77 5h

Training

(Unlabeled)

FMA large 106,574 888h

In-house 171 52h

Test

Jamendo 16 1h

RWC 60 4h 21m

ADC04 12 4m

MIREX05 9 4m

Orchset 64 24m

Table 7.1: Description of training and test datasets.

genre included. According to [100], it was confirmed that the larger the size of the unlabeled dataset

has a positive e↵ect on the improvement of the model performance. Therefore, in this study, we use the

FMA large data for training the model without conducting a comparative experiment on the data size.

As to hard negative sampling, we used in-house datasets collected from jazz, blues, and classical

songs. This dataset contains songs that are played by instruments only, so all pseudo-labels are annotated

unvoiced. The harmonic curve corresponding to the melody is wavy like a human voice and its level is

dominant, so the SAVD model often mispredicts these unvoiced frames as voice frames. The total length

of the in-house dataset amounts to about 52 hours. For all unlabled data, we augmented the unlabeled

datasets via random audio augmentation during training as described in [100].

7.4.2 Test data

We used three public test sets (Jamendo, RWC, ADC04, and MIREX051) to evaluate the perfor-

mance of vocal melody extraction. In this study, we excluded non-vocal tracks from these data sets.

Orchset [109] is used for testing to check how many false-positive errors occur. It only contains audio

clips of symphonic music without vocal tracks, so we annotated all frames as non-voice.

7.5 Experiments

7.5.1 Experiment 1: Teacher-Student Model and Iterative Training

To verify the e↵ectiveness of the proposed teacher-student model in SVAD, we compared the

supervisory-only model (baseline) and the proposed semi-supervised model (SSL). In this experiment,

we trained Noisy Student model described in Section 7.3.2 using several labeled datasets and FMA large

as unlabeled data. We also iterated the self-training 2 times for the model described in Section 6.5.5 We

evaluated the performance of each model on RWC, ADC04, MIERX05 and Orchset, including Jamendo,

which is used as a standard data set to evaluate SVAD performance.

As shown in Figure 7.3, SSL1 outperforms the Baseline on all test datasets and achieve 2.45% higher

average accuracy than Baseline. In addition, SSL2 achieves 0.45% higher average accuracy than SSL1.

1[http://labrosa.ee.columbia.edu/projects/melody/](http://labrosa.ee.columbia.edu/projects/melody/)
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Figure 7.3: Comparison with supervised-only model (as a Baseline) and two Noisy Student models (as a

SSL) on five test sets. The subscript ‘1’ and ‘2’ denotes a number of training iteration by teacher-student

framework.

These indicate that that teacher-student model and self-training using the noisy student can help improve

the performance of singing voice detection by leveraging a large-scale unlabeled dataset.

7.5.2 Experiment 2: Hard Negative Sampling

Figure 7.4: Comparison with Baseline model, semi-supervised model, and hard negative sampling model

(as an HNS) that hard negative samples are added.

We investigated the e↵ectiveness of the hard negative sampling by comparing the HNS model with

Baseline and SSL models. The results are illustrated in Figure 7.4. Orchset consists of audio clips

of symphonic music with distinct melody lines, so it is prone to generate false-positive errors in SVAD

results. Therefore, the baseline model achieves an accuracy of 78.2% for Orchset. This result is more than

10% less accurate than the other test datasets. On the other hand, the performance of HNS improved

for all datasets compared to the baseline model, with a significant performance improvement of 15.4%

for Orchset. The results shows that the hard negative sampling is particularly e↵ective to reduce false

positives caused by melodies played by the musical instrument while improving overall performance. It

also indicates that the hard negative mixing strategy would help the model learn representations that

could discriminate between the voice and the instrument. However, the performance of the HNS model

was lower compared to the SSL model except for ADC04. It shows that simply treating negative samples
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within the mini-batch could hurt discriminative training.

Figure 7.5: Comparison with Baseline, SSL, HNS and ‘HNS+SSL’ model that is a semi-supervised

learning model with unlabeled data and hard negative samples

To take advantage of both hard negative sampling and SSL, we trained the student model(as a

HNS+SSL) by using the HNS model as a teacher and additionally using hard negative samples as

unlabeled data. As shown in Figure 7.5, HNS+SSL has a 93.2% average accuracy and outperforms other

models. In particular, There is a only 3% false-positive in Orchset, which is 18.8% higher than the

baseline model. This results show that large-scale unlabeled data and hard negative samples available

over SSL are e↵ective to prevent overfitting and would help the networks produce a decision boundary.

7.6 Comparison with State-of-the-Arts

We compared the proposed model with other singing voice detection algorithms: Mauch [102],

Lehner-1 [98], Lehner-2 [43], Lehner-3 [51], Leglaive [36], Schlüter [38], Zhang [99]. Each algorithm was

evaluated on the RWC and Jamendo datasets, and the comparison results are shown in Table 7.2 and

Table 7.3.

Accuracy Precision Recall F1

Lehner-1 0.848 - - 0.846

Lehner-2 0.882 0.880 0.862 0.871

Lehner-3 0.894 0.898 0.906 0.902

Schlüter 0.923 - 0.903 -

Leglaive 0.915 0.895 0.926 0.910

Zhang 0.888 0.865 0.920 0.892

Proposed 0.903 0.934 0.884 0.904

Table 7.2: Singing voicing detection results of the proposed and other methods on the Jamendo dataset.

Some performances were not listed in these tables as no experimental results were reported. The

performance of the proposed model is generally comparable to other algorithms on the Jamendo dataset

and outperforms other algorithms on the RWC dataset. The results show that the SSL through the

noisy student architecture and applying hard negative sampling together helps to make the model more

robust.
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Accuracy Precision Recall F1

Mauch 0.872 0.887 0.921 0.904

Lehner-1 0.868 0.879 0.906 0.892

Lehner-2 0.875 0.875 0.926 0.900

Lehner-3 0.923 0.938 0.934 0.936

Schlüter 0.927 - 0.935 -

Zhang 0.916 0.926 0.934 0.930

Proposed 0.975 0.973 0.973 0.974

Table 7.3: Singing voicing detection results of the proposed and other methods on the RWC dataset.

7.7 Conclusions

In this study, we also reveal that the SSL help improves performance singing voice detection as well

as vocal melody extraction leveraging large-scale unlabeled music datasets and hard negative samples.

Large-scale unlabeled data and hard negative samples available over SSL are e↵ective to prevent over-

fitting. By comparing the performance of each model in Orchset, we found that hard negative sampling

was e↵ective in reducing false-positive errors. We also revealed that rather than simply adding hard

negative samples to the training data, it is helpful to improve the performance of the model by utilizing

them for training through SSL with large-scale unlabeled data. However, the limitation of this study is

that the hard negative samples were selected heuristically from songs whose melody was played as an

instrument. Future studies should explore a general method for automatically selecting hard negative

samples from training data instead of the heuristic method.
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Chapter 8. Conclusions

8.1 Summary

Vocal melody extraction is the task that identifies the melody pitch contour of singing voice from

polyphonic music. We have presented our various works on vocal melody extraction using deep learning

methods, such as various models, loss functions, and learning methods.

Chapter 2 briefly introduced conventional algorithms and reviewed various deep learning-based

models in terms of input/output feature, pre/post-processing, model architecture, and loss function.

In Chapter 3, we presented a classification-based singing melody extraction model using CNN. The

proposed model consists of a singing pitch extractor (SPE) and a singing voice activity detector (SVAD).

The SPE is trained to predict a high-resolution pitch label of singing voice from a short segment of

a spectrogram. This allows the model to predict highly continuous curves. The melody contour is

smoothed further by post-processing the output of the melody extractor. SVAD was trained to use

the mel-spectrogram as input to detect if the corresponding frames contain singing voices. This often

produces a voice false alarm error. However, we could reduced the errors around the boundary of singing

segments by exploiting the output of the SPE.

Chapter 4 reviewed the existing loss functions (CEG, HSL, FL) and other proposed variants (GPL,

GOL). Unlike categorical labels such as music genre, the pitch label is represented as a continuous scale

and also the distance between two pitches is highly nonlinear. Considering the task-specific characteris-

tics, we proposed several variations of categorical loss functions. Through an experiment comparing the

loss function, we discussed the direction to improve the melody extraction performance.

In Chapter 5, we introduced a joint detection and classification (JDC) network that conducts the

singing voice detection and the pitch estimation simultaneously. The JDC network is composed of the

main network that predicts the pitch contours of the singing melody and an auxiliary network that

facilitates the detection of the singing voice. The main network is built with a CRNN with residual

connections and predicts pitch labels that cover the vocal range with a high resolution, as well as non-

voice status. The auxiliary network is trained to detect the singing voice using multi-level features shared

from the main network. The two optimization processes are tied with a joint melody loss function. The

experiments demonstrate how the auxiliary network and the joint melody loss function improve melody

extraction performance. Furthermore, the results show that our method outperforms state-of-the-art

algorithms on the datasets.

Chapter 6 presented the SSL method using teacher-student (TS) models for vocal melody extraction.

The lack of labeled data is a major obstacle in melody extraction, where labeling is extremely laborious

or costly. SSL provides a solution to alleviate the issue by leveraging a large amount of unlabeled data.

The teacher model is pre-trained with labeled data and guides the student model to make identical

predictions given unlabeled input in a self-training setting. We examined three setups of TS models with

di↵erent data augmentation schemes and loss functions. Also, considering the scarcity of labeled data

in the test phase, we artificially generated large-scale testing data with pitch labels from unlabeled data

using an analysis-synthesis method. The results show that the SSL method significantly increases the

performance against supervised learning only and the improvement depends on the TS models, the size

of unlabeled data, the number of self-training iterations, and other training details. We also found that
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it is essential to ensure that the unlabeled audio has vocal parts. Finally, we showed that the proposed

SSL method enables a baseline CRNN model to achieve performance comparable to state-of-the-arts.

Chapter 7 revealed that the SSL method also e↵ective to improve performance singing voice detection

as well as vocal melody extraction leveraging large-scale unlabeled music datasets and hard negative

samples. These results show that the proposed SSL method is not limited to melody extraction or

singing voice detection, but can be extended to other MIR operations without labeled data such as chord

detection and automatic music recording.

8.2 Review on Current State and Future Work

In this thesis, we focused on vocal melody extraction and discussed various methods and training

details. However, there are still several limitations and a large margin of improvement in melody extrac-

tion. We need to discuss the scope of the ‘vocal melody’ to evaluate the performance of the algorithm

more reasonably. The MedleyDB dataset divides the definition of melody into three based on the num-

ber of target source and melody line and provides ground-truth labels according to these definitions.

However, there is still no consensus on the definition of the term ‘vocal melody’. For example, it should

be discussed how to define the melody in the part where singers sing harmony, or in the part where they

sing like a background like ‘woo—ah—’. This problem had an e↵ect on the devaluation of the actual

algorithm performance. This problem a↵ected the devaluation of the actual algorithm performance.

Therefore, it is essential to clarify the definition of a vocal melody and properly label the pitch according

to that definition.

Weak or unclear vocal sounds often give rise to missing or false-positive error, because it is di�cult

to clearly distinguish between the vocal melody and the harmonic pattern in the background. With

separate vocal tracks, we may mitigate the errors related to level by adjusting the mixing of vocal gains

and augmenting the training data. On the other hand, excessive e↵ects applied to the mastering process

produce a fundamental problem that makes the singing voice obscure. Until a method that can e↵ectively

attenuate these sound e↵ects is proposed, it could still remain a challenging task to accurately determine

estimating pitch and detecting voicing.

An interesting area of future work is the in-depth discussion of new metrics that reflect the continuity

and accuracy of the pitch. The need for new metrics related to continuity comes from the fact that existing

evaluation metrics are based on frame-level accuracy and do not deal with continuity. Furthermore, the

objective test results evaluated for each frame are not necessarily related to the perceptual test results.

We may evaluate pitch continuity by introducing consecutive frame-level accuracy instead of single frame-

level accuracy. In addition, it is necessary to study how the perceived results correlate with the existing

evaluation metrics focused on the quantitative evaluation of the algorithm. We can also propose another

new evaluation metric that can indicate precision power by aggregating performance measures across all

possible pitch tolerance. For evaluation of melody extraction algorithm, the pitch tolerance is typically

fixed at ±50 cents, which can make the evaluation metric sensitive to a specific threshold. Inspired by

area under a ROC curve [110], we also expect to propose a new evaluation by plotting according to pitch

tolerance from 0 to 1 semitone and calculating the area under the curve. It can summarize the overall

model performance for all possible thresholds, avoiding the subjectivity assumed in the pitch tolerance

selection process.

Another of our next goals is to propose applications that help users find the music they are interested

in by automatically analyzing and comparing the melody of the song. Modern music search services
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require more advanced solutions to search for songs or evaluate musical characteristics. Since the melody

is one of the musical aspects that often does not change with other performances, melody extraction is

the most basic step in music analysis. We believe that our high-performance algorithms and strategies for

melody extraction can attribute to the application such as cover song detection and query-by-humming.
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sis/synthesis framework for automatic f0 annotation of multitrack datasets..” in In Proceedings of

the International Society for Music Information Retrieval (ISMIR), pp. 71–78, 2017.

[76] Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., and Ra↵el, C. A., “Mixmatch:

A holistic approach to semi-supervised learning.” in Advances in Neural Information Processing

Systems, pp. 5050–5060, 2019.

[77] Xie, Q., Hovy, E., Luong, M.-T., and Le, Q. V. (2019). “Self-training with noisy student improves

imagenet classification.” arXiv preprint arXiv:1911.04252.

[78] Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini, N., Cubuk, E. D., Kurakin, A., Zhang,

H., and Ra↵el, C. (2020). “Fixmatch: Simplifying semi-supervised learning with consistency and

confidence.” arXiv preprint arXiv:2001.07685.
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